

Profiling the Design Space for Graph Neural Networks based Collaborative Filtering

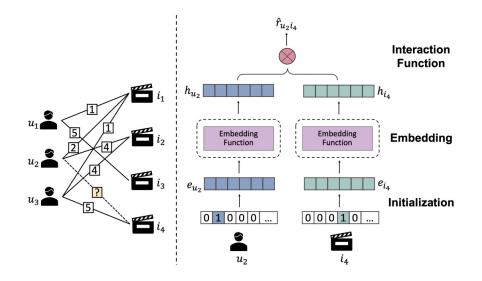
Zhenyi Wang¹, Huan Zhao², Chuan Shi¹

¹Beijing University of Posts and Telecommunications, China ²4Paradigm Inc., China

- 1 Background
- The Design Space
- 3 Evaluation
- 4 Conclusions

- 1 Background
- The Design Space
- 3 Evaluation
- 4 Conclusions

- Collaborative Filtering (CF) has been one of the most popular recommender system (RS) methods
- **Graph Neural Networks (GNNs)** have been incorporated for the CF tasks, since the user-item interactions can be naturally modeled as a bipartite graph



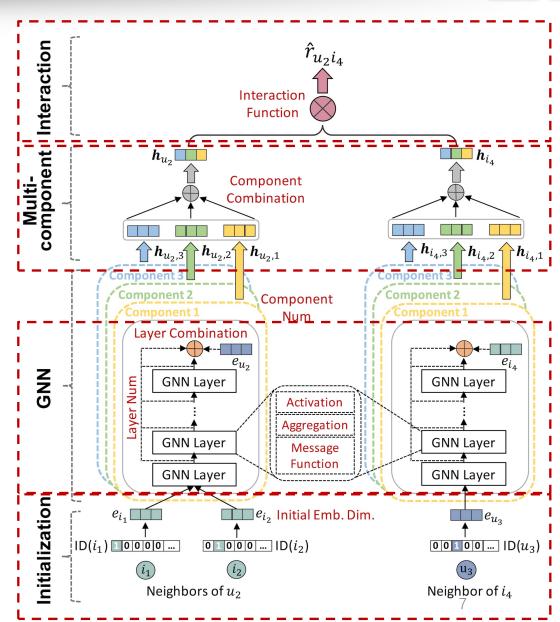
- Existing GNN-based methods are mainly limited to designing a single best architecture for a specific scenario
- Little has been done to systematically understand the influences of different design dimensions of GNN-based CF on recommendation performance

We propose to profile the design space of existing GNN-based methods for CF

- 1 Background
- The Design Space
- 3 Evaluation
- 4 Conclusions

The Design Space The Unified Framework

- 4 modules of the unified framework:
 - Initialization performs embedding matrix IDlookup
 - ☐ GNN refines the embeddings via the propagation of GNN layers
 - Multi-component models diverse user interests from different aspects
 - ☐ Interaction predicts the rating value of the user-item pair
- Covers extensive popular GNN-based CF models
- On top of the framework, 9 design dimensions can be extracted



The Design Space The Proposed Design Space

Popular choices in the 9 design dimensions:

Design Dimension	Choices	•
Initial Embedding Dimension d	64, 128, 256	-
Message Function $m(\cdot)$	Identity,Hadamard	<u> </u>
Aggregation $f(\cdot)$	None, GCN, GAT, GIN, GraphSAGE	
Activation $\sigma(\cdot)$	Identity, Sigmoid, Tanh, ReLU, PReLU, LeakyReLU	
Layer Number L	1, 2, 3, 4	
Layer Combination $g(\cdot)$	Stack, Concat, Sum, Mean	
Component Number K	1, 2, 3, 4	
Component Combination $c(\cdot)$	Concat, Mean, Att	
Interaction Function $p(\cdot)$	Dot Product, Concat+MLP, Sum+MLP	

$$\mathbf{h}_{u}^{(l+1)} = \sigma \left(\hat{r}_{ui} = p(\mathbf{h}_{u}, \mathbf{h}_{i})'(u) \right\}, \mathbf{h}_{u}^{(l)} \right]$$

nandannaggeintersting functions Alarge whet capacity of the telesions base with the those non-GNN-based models

■ To explore the impacts of different design dimensions, we propose to profile the design space, defined as the Cartesian product of design dimensions^[1]

The Design Space Relationship with Existing CF Methods

■ Popular CF methods that can be instantiated from the proposed design space:

Category	Model	$m(\cdot)$	$f(\cdot)$	$\sigma(\cdot)$	$g(\cdot)$	$c(\cdot)$	$p(\cdot)$	Single-/Multi- component
Classic	MF [16, 24] LLORMA [18, 46]	Identity Identity	None None	Identity Identity	Stack Stack	 	Dot Product Dot Product	Single Multiple
MLP-based	NCF [11]	Identity	None	ReLU	Stack	ACC	Concat+MLP	Single
- NILI basea								
	NGCF [36] LightGCN [10]	Hadamard Identity	GCN GCN	LeakyReLU Identity	Concat Mean	<u>-</u>	Dot Product Dot Product	Single Single
	LR-GCCF [2]	Identity	GCN	Identity	Concat		Dot Product	Single
GNN-based	SMOG-CF [43]	Hadamard	GCN	ReLU	Concat	-	Dot Product	Single
Giviv-baseu	PinSage [41]	Identity	GraphSAGE	ReLU	Stack	-	Dot Product	Single
	MCCF [38]	Identity	GAT	ReLU	Stack	Att	Concat+MLP	Multiple
	DGCF [37]	Identity	GCN	Tanh	Sum	Concat	Dot Product	Multiple

- 1 Background
- The Design Space
- 3 Evaluation
- 4 Conclusions

Evaluation of the Design Space

Dataset	# of Users	# of Items	# of Interactions	Rating Scale	Density
Yelp ¹	58,069	31,721	1,160,605	[1,5]	0.063%
Amazon-CDs [9]	31,296	24,379	622,163	[1,5]	0.082%
Amazon-Movies [9]	44,439	25,047	1,070,860	[1,5]	0.096%
YahooMusic [5, 25]	1,357	1,363	5,335	[1,100]	0.28%
Amazon-Beauty [9]	7,068	3,570	79,506	[1,5]	0.32%
Flixster[13, 25]	2,341	2,956	26,173	[0.5,5]	0.38%
Douban [23, 25]	2,999	3,000	136,891	[1,5]	1.52%
MovieLens-1M ²	6,040	3,706	1,000,209	[1,5]	4.47%
MovieLens-100K ³	943	1,682	100,000	[1,5]	6.31%

https://www.yelp.com/dataset/

Loss: MSE

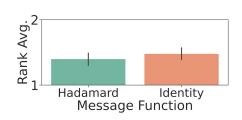
$$L = \frac{\sum_{(u,i)\in O_t} (\hat{r}_{ui} - r_{ui})^2}{|O_t|} + \lambda ||\Theta||^2$$

Evaluation Metric: RMSE

$$RMSE = \sqrt{\frac{\sum_{(u,i)\in O_e} (\hat{r}_{ui} - r_{ui})^2}{|O_e|}}$$

Evaluation technique: *controlled random search*^[1]

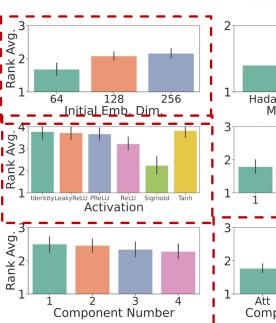
Group Configuration Space					Experimental Results		
No.	Message Function	Activation		Interaction Dataset		Performance	Ranking
1	Identity	5		Dot Product	Vole	0.8996	2
1	Hadamard	ReLU		Dot Product	Yelp	0.8665	1
2	Identity	Ciamaid		Concat+MLP	Amazon-CDs	0.7636	1
2	Hadamard	Sigmoid		CONCAL+IVILP	Amazon-CDS	0.7812	2
S	Identity	Tanh		Sum+MLP	MovieLens-1M	0.8231	1(tie)
3	Hadamard	Iallii		Sumfivile	MONETERS-TIM	0.8231	1(tie)

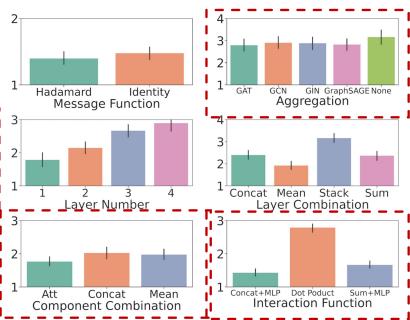


² https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/1m/

Evaluation Results





- The experimental findings provide valuable insights for effectively designing top-performing models
 - ☐ GAT and GraphSAGE slightly outperform, and None is competitive
 - Sigmoid stands out
 - ☐ <u>Att</u> is the preferable multi-component combination
 - Neural interaction is superior to <u>Dot Product</u>
 - ...
- There exists some redundancy in the design space
- The vanilla design space can be further **pruned**
 - e.g., the initial embedding dimension can be fixed as 64
- Boost the searching efficiency of top-performing models

Evaluation The Pruned Design Space

- By remaining favorable design choices, the pruned design space contains a higher concentration of top-performing models
- Choices in the design dimensions of the pruned design space:

Design Dimension	Choices	
Initial Embedding Dimension d	64	
Message Function $m(\cdot)$	Identity, Hadamard	
Aggregation $f(\cdot)$	None, GraphSAGE	96 v.s. 103,680, reduction of three
Activation $\sigma(\cdot)$	Identity, Sigmoid, ReLU	orders of magnitude (1,080x)
Layer Number L	1, 2	ordere er magimade (1,000%)
Layer Combination $g(\cdot)$	Mean	
Component Number K	1, 4	
Component Combination $c(\cdot)$	Att	
Interaction Function $h(\cdot)$	Concat+MLP, Sum+MLP	

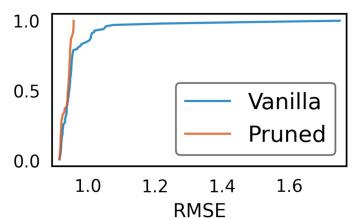
Evaluation of the Pruned Design Space

- Evaluation technique
 - □ *RMSE* empirical distribution function (EDF)^[1]
 - \square Suppose 1 as the indicator function, n as the number of sampled models, each with RMSE

 x_i . The RMSE EDF is given by:

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [x_i < x]$$

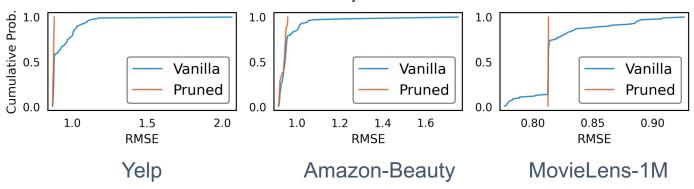
 \square F(x) gives the fraction of models with RMSE less than x



Comparing distributions can help to obtain more robust and informative conclusions

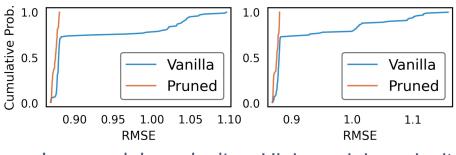
Evaluation of the Pruned Design Space

□ Different levels of density

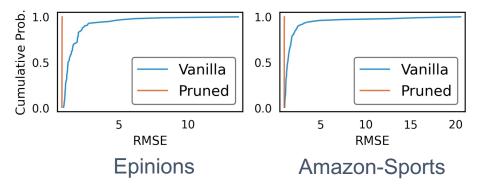


Dataset	Density
Yelp ¹	0.063%
Amazon-CDs [9]	0.082%
Amazon-Movies [9]	0.096%
YahooMusic [5, 25]	0.28%
Amazon-Beauty [9]	0.32%
Flixster[13, 25]	0.38%
Douban [23, 25]	1.52%
MovieLens-1M ²	4.47%
MovieLens-100K ³	6.31%

■ Different model complexity



Low model comlexity High model comlexity



■ The pruned design space consistently holds better quality, which demonstrates its strong generalization to various new settings.

Evaluation

Case Study: Random Search

- We perform random search on the pruned design space
 - ☐ The searched model architectures on new datasets:

Dataset	$m(\cdot)$	$f(\cdot)$	$\sigma(\cdot)$	L	K	$p(\cdot)$
Epinions	Hadamard	None	ReLU	1	1	Sum+MLP
Amazon-Sports	Identity	GraphSAGE	Sigmoid	1	4	Sum+MLP

☐ Performance comparisons with baselines:

Model	Epinions	Amazon-Sports
MF [16]	0.9945 ± 0.0000	0.9882 ± 0.0007
NCF [11]	1.0070 ± 0.0055	0.9342 ± 0.0008
NGCF [36]	1.1437 ± 0.0240	1.0668 ± 0.0038
LightGCN [10]	0.9926 ± 0.0001	0.9705 ± 0.0003
DGCF [37]	1.6800 ± 0.2272	0.9894 ± 0.0000
RS-10	0.8729 ± 0.0014	0.9327 ± 0.0006

- The randomly searched models outperform all the baselines
- The pruned design space helps to efficiently design top-performing models for new recommendation scenarios

- 1 Background
- The Design Space
- 3 Evaluation
- 4 Conclusions

Problem

☐ The **first attempt** to profile the design space of GNN-based CF

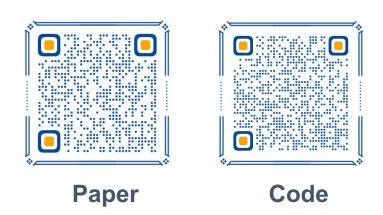
Evaluation of the Design Space

- ☐ Propose a unified framework covering popular GNN-based CF models
- □ Develop a design space and **evaluate** it by extensive experiments

Evaluation of the Pruned Design Space

- ☐ Prune the design space for a higher concentration of top-performing models
- ☐ Empirical studies demonstrate its high quality and strong generalization ability

Thank you!



Contact: Zhenyi Wang, zy wang@bupt.edu.cn