

Search to aggregate neighborhood for graph neural network

Huan Zhao, Quanming Yao, Weiwei Tu 4Paradigm & Department of Electronic Engineering, Tsinghua University {zhaohuan,yaoquanming,tuweiwei}@4paradigm.com

• Graph neural networks have been a hot topic in recent years.

Slide Credit: Tecent AI Lab

- Graph neural networks have been a hot topic in recent years.
 - Applications

Commodity Recommendation

Image Credit: Jure Stanford CS224

Interactions

"You might also like"

Traffic Prediction

Google Maps ETA Improvements Around the World

Image Credit: DeepMind

Molecular Classification

Image Credit: Petar Veličković

- Message passing framework
 - Node embedding updated by neighbors
 - K-layer GNN access K-hop neighbors
 - "Neighborhood aggregation"

1

Self contained Neighborhood

$$\mathbf{h}_{v}^{l} = \sigma \left(\mathbf{W}^{(l)} \cdot \operatorname{AGG}_{\operatorname{node}} \left\{ \{ \mathbf{h}_{u}^{(l-1)}, \forall u \in \widetilde{N}(v) \} \right\} \right)$$

- Variants of GNN
 - GCN: normalized sum aggregator
 - GraphSAGE: MEAN, MAX, SUM, LSTM
 - GAT: Attention aggregator
 - GIN: Multi-Layer Perceptrons (MLP)

- Architecture challenge
 - Tons of GNN models have been designed.
 - E.g. 315, 000 GNN models by 12 dimensions.

• Architecture challenge

- Performance of GNN models vary in different datasets

It leads to the application of neural architecture search (NAS)

Neural Architecture Search

- Neural Architecture Search (NAS)
 - Exploring the possibility of automatically searching for unexplored architectures beyond human-designed ones.
 - Can obtain data-specific models.
- Trial and Error
 - Iteratively train and evaluate the candidate architectures until obtaining the best one.
 - Search space
 - Search algorithm

Neural Architecture Search

• An example in CNN architecture search.

NAS for GNN

- GraphNAS [1]
 - The first reinforcement learning method for graph neural architecture search
 - Search space

Actions	Contents	
SAM	Sample neighbors	
ATT	Const, gcn, gat, sym-gat, cos	
AGG	Sum, mean, max, mlp	
Heads K	1, 2, 4, 8, 16	
DIM	16, 32, 64, 128	
ACT	Relu, elu, tanh, linear, sigmoid	

- Search algorithm
 - Update the RNN controller based on the validation accuracy of the sampled GNN models.

NAS for GNN

• GraphNAS obtain data-specific GNN models in different datasets.

- Similar works like Auto-GNN [1]

• However, the RL-based algorithm is inherently expensive, since it has to train from scratch every sampled architecture.

- Computational challenge

• Thus, we propose a more efficient method for graph neural architecture search in this work.

Differentiable graph architecture search

• Search to Aggregate Neighborhood (SANE) for GNN.

- Contributions
 - A novel and expressive search space
 - Differentiable search algorithm
 - Two orders more efficient
 - Extensive experiments demonstrate the effectiveness and efficiency of SANE

Search Space

- Message passing framework
 - Node aggregator
 - 11 popular aggregators
 - Layer aggregator
 - Inspired by JK network [1]
 - Search to skip or not for each layer.
- The detailed search space

	Operations
\mathcal{O}_n	SAGE-SUM, SAGE-MEAN, SAGE-MAX, GCN, GAT,GAT-SYM, GAT-COS, GAT-LINEAR, GAT-GEN-LINEAR, GIN, GeniePath
\mathcal{O}_l	CONCAT, MAX, LSTM
\mathcal{O}_s	IDENTITY, ZERO

Search Space

• Compared to human-designed GNNs

	Model	Node aggregators	Layer aggregators	Emulate by SANE
	GCN [14]	GCN	×	✓
	SAGE [3]	SAGE-SUM/-MEAN/-MAX	×	✓
GAT [4]		GAT, GAT-SYM/-COS/ -LINEAR/-GEN-LINEAR	×	✓
Human-designed	GIN [16]	GIN	×	✓
architectures	LGCN [15]	CNN	×	✓
	GeniePath [18]	GeniePath	×	✓
	JK-Network [17]	depends on the base GNN	\checkmark	✓
NAS	SANE	learned combination of aggregators	✓	

Compared to existing NAS methods for GNN

TABLE III: A detailed comparison between SANE and existing NAS methods for GNN.

	Searc	Search algorithm	
	Node aggregators	Layer aggregators	
GraphNAS, Auto-GNN	√	×	RL
Policy-GNN	×	×	RL
SANE	√	√	Differentiable

Differentiable search algorithm

- Supernet (DAG)
 - Continuous relaxation
 - Mixed OPs

$$\bar{o}^{(i,j)}(x) = \sum_{o \in O} \frac{\exp(\boldsymbol{\alpha}_o^{(i,j)})}{\sum_{o' \in O} \exp(\boldsymbol{\alpha}_{o'}^{(i,j)})} o(x)$$

• Computation process

Differentiable search algorithm

• Search $\{\alpha_n, \alpha_s, \alpha_l\}$

DEFINITION 1 (SANE PROBLEM). Formally, the general paradigm of SANE is to solve a bi-level optimization problem:

 $\min_{\boldsymbol{\alpha} \in \mathcal{A}} \mathcal{L}_{val}(\boldsymbol{w}^*(\boldsymbol{\alpha}), \boldsymbol{\alpha}), \text{ s.t. } \boldsymbol{w}^*(\boldsymbol{\alpha}) = \arg\min_{\boldsymbol{w}} \mathcal{L}_{train}(\boldsymbol{w}, \boldsymbol{\alpha}), \quad (6)$

where \mathcal{L}_{train} and \mathcal{L}_{val} are the training and validation loss, respectively. $\boldsymbol{\alpha}$ represent a network architecture, where $\boldsymbol{\alpha} = \{\boldsymbol{\alpha}_n, \boldsymbol{\alpha}_s, \boldsymbol{\alpha}_l\}$ and $\boldsymbol{w}^*(\boldsymbol{\alpha})$ the corresponding weights after training.

- Derive architecture
 - Choose the OP with the largest weight.

$$o^{(i,j)} = \operatorname{arg\,max}_{o \in O} \boldsymbol{\alpha}_{o}^{(i,j)}$$

Differentiable search algorithm

Gradient-based optimization
– First-order approximation [1]

 $\nabla_{\alpha} \mathcal{L}_{val}(\mathbf{w}^{*}(\alpha), \alpha) \approx \nabla_{\alpha} \mathcal{L}_{val}(\mathbf{w} - \xi \nabla_{\mathbf{w}} \mathcal{L}_{train}(\mathbf{w}, \alpha), \alpha)$

Algorithm 1 SANE - Search to Aggregate NEighborhood.

Require: The search space \mathcal{F} , the number of top architectures k, the epochs for search T.

Ensure: The *k* searched architectures \mathcal{A}_k .

- 1: while $t = 1, \dots, T$ do
- 2: Compute the validation loss \mathcal{L}_{val} ;
- 3: Update α_n , α_s and α_l by gradient descend rule Eq. (7) with Eq. (3), (4) and (5) respectively;
- 4: Compute the training loss \mathcal{L}_{train} ;
- 5: Update weights **w** by descending $\nabla_{\mathbf{w}} \mathcal{L}_{train}(\mathbf{w}, \boldsymbol{\alpha})$ with the architecture $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_n, \boldsymbol{\alpha}_s, \boldsymbol{\alpha}_l]$;
- 6: end while
- 7: Derive the final architecture based on the trained $\{\alpha_n, \alpha_s, \alpha_l\}$;

Liu et al. DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH. ICLR 2019

- Datasets and Tasks
 - Node classification
 - Transductive
 - Inductive
 - Entity alignment
 - DB task

TABLE V: The statistics of the dataset DBP15K_{ZH-EN}.

	#Entities	#Relations	#Attributes	#Rel.triples	#Attr.triples
Chinese	66,469	2,830	8.113	153,929	379,684
English	98,125	2,317	7,173	237,674	567,755

TABLE IV: Dataset statistics of the datasets in the experiments. N, E, F and C denote the number of "Nodes", "Edges" "Features" and "Classes", respectively.

Task	Dataset	N	Е	F	С
	Cora	2,708	5,278	1,433	7
Transductive	CiteSeer	3,327	4,552	3,703	6
	PubMed	19,717	44,324	500	3
Inductive	PPI	56,944	818,716	121	50

- Node classification
 - Baselines
 - Human-designed GNNs
 - GCN, GraphSAGE, GAT, GIN, LGCN, GeniePath
 - GCN-JK, GraphSAGE-JK, GAT-JK, GAT-JK, GIN-JK, GeniePath-JK
 - NAS for GNNs
 - Random, Bayesian, GraphNAS, GraphNAS-WS
 - Settings
 - 6:2:2 in transductive
 - 10:1:1 in inductive

- Performance comparison
 - Node classification
 - Best performance compared to all baselines.

			Transductive		Inductive
	Methods	Cora	CiteSeer	PubMed	PPI
	GCN	0.8811 (0.0101)	0.7666 (0.0202)	0.8858 (0.0030)	0.6500 (0.0000)
	GCN-JK	0.8820 (0.0118)	0.7763 (0.0136)	0.8927 (0.0037)	0.8078(0.0000)
	GraphSAGE	0.8741 (0.0159)	0.7599 (0.0094)	0.8834 (0.0044)	0.6504 (0.0000)
	GraphSAGE-JK	0.8841 (0.0015)	0.7654 (0.0054)	0.8942 (0.0066)	0.8019 (0.0000)
Human-designed	GAT	0.8719 (0.0163)	0.7518 (0.0145)	0.8573 (0.0066)	0.9414 (0.0000)
architectures	GAT-JK	0.8726 (0.0086)	0.7527 (0.0128)	0.8674 (0.0055)	0.9749 (0.0000)
areinteetures	GIN	0.8600 (0.0083)	0.7340 (0.0139)	0.8799 (0.0046)	0.8724 (0.0002)
	GIN-JK	0.8699 (0.0103)	0.7651 (0.0133)	0.8878 (0.0054)	0.9467 (0.0000)
	GeniePath	0.8670 (0.0123)	0.7594 (0.0137)	0.8846 (0.0039)	0.7138 (0.0000)
	GeniePath-JK	0.8776 (0.0117)	0.7591 (0.0116)	0.8868(0.0037)	0.9694 (0.0000)
	LGCN	0.8687 (0.0075)	0.7543 (0.0221)	0.8753 (0.0012)	0.7720 (0.0020)
	Random	0.8594 (0.0072)	0.7062 (0.0042)	0.8866(0.0010)	0.9517 (0.0032)
	Bayesian	0.8835 (0.0072)	0.7335 (0.0006)	0.8801(0.0033)	0.9583 (0.0082)
NAS approaches	GraphNAS	0.8840 (0.0071)	0.7762 (0.0061)	0.8896 (0.0024)	0.9692 (0.0128)
	GraphNAS-WS	0.8808 (0.0101)	0.7613 (0.0156)	0.8842 (0.0103)	0.9584 (0.0415)
one-shot NAS	SANE	0.8926 (0.0123)	0.7859 (0.0108)	0.9047 (0.0091)	0.9856 (0.0120)

• Searched architectures

- Attention aggregators are more likely to selected

- Entity alignment
 - 2-layer GNN as backbone
 - 30% 10% 60% -> train/validation/test
 - "GAT-GeniePath"

TABLE VIII: The results of DB task. We use Hits@K as the evaluation metric, and the results of JAPE and GCN-Align are from [42]. Note that JAPE is the variant using the same features as GCN-Align.

	ZH→EN			EN→ZH		
	@1	@10	@50	@1	@10	@50
JAPE	33.32	69.28	86.40	33.02	66.92	85.15
GCN-Align	41.25	74.38	86.23	36.49	69.94	82.45
SANE	42.10	74.51	88.12	38.41	70.23	85.43

More exploration of graph architecture search in DB tasks in future work.

• Search Efficiency

- The test accuracy w.r.t. search time (s)

• Search Efficiency

- The test accuracy w.r.t. search time (s)

 The running cost (s) of each method during the search phase.

	tı	ansductive	inductive task	
	Cora	CiteSeer	PubMed	PPI
Random	1,500	2,694	3,174	13,934
Bayesian	1,631	2,895	4,384	14,543
GraphNAS	3,240	3,665	5,917	15,940
SANE	14	35	54	298

- Ablation Study
 - The influence of differentiable search
 - The influence of K

- Ablation Study
 - The efficacy of the designed search space

Methods	Cora	CiteSeer	PubMed	PPI
GraphNAS	0.8840 (0.0071)	0.7762 (0.0061)	0.8896 (0.0024)	0.9698 (0.0128)
GraphNAS-WS	0.8808 (0.0101)	0.7613 (0.0156)	0.8842 (0.0103)	0.9584 (0.0415)
GraphNAS(SANE search space)	0.8826 (0.0023)	0.7707 (0.0064)	0.8877 (0.0012)	0.9887 (0.0010)
GraphNAS-WS(SANE search space)	0.8895 (0.0051)	0.7695 (0.0069)	0.8942 (0.0010)	0.9875 (0.0006)

- Failure of searching for universal approximator

TABLE X: The performance of searching for MLP. We list the best performance of SANE from Table VI as comparison.

Dataset	Random	Bayesian	SANE
Cora CiteSeer PubMed	0.8698 (0.0011) 0.7298 (0.0078) 0.8662 (0.0030)	0.8470 (0.0032) 0.7103 (0.0057) 0.8699 (0.0065)	0.8926 (0.0123) 0.7859 (0.0108) 0.9047 (0.0091)
PPI	0.8166 (0.0089)	0.8685 (0.0017)	0.9856 (0.0120)

Conclusion and Future work

- Conclusion
 - We design a novel and effective search space
 - We develop a differentiable search algorithm
 - Extensive experiments demonstrate the effectiveness and efficiency of the proposed framework.
- Future work
 - More advanced one-shot NAS approaches
 - Stochastic Neural Architecture Search (SNAS) [1]
 - More tasks
 - Open Graph Benchmark [2]

Acknowledgements

- Support from 4Paradigm.
- Lanning Wei helps implement some baselines.

Q&A

- Paper & Code
 - <u>https://github.com/AutoML-4Paradigm/SANE</u>
 - Any questions, open an issue or drop an email to <u>zhaohuan@4paradigm.com</u>

- More codes on AutoML research can be found in our Github.
 - <u>https://github.com/AutoML-4Paradigm</u>
- More works related to AutoGraph can be found in my homepage.
 - <u>https://hzhaoaf.github.io/</u>