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Graph Neural Network

Graph neural networks have been a hot topic in
recent years.

— Research
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Graph Neural Network

* Graph neural networks have been a hot topic in
recent years.
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http://web.stanford.edu/class/cs224w/slides/01-intro.pdf
https://petar-v.com/talks/GNN-Wednesday.pdf
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Graph Neural Network

 Message passing framework

— Node embedding updated by neighbors
— K-layer GNN access K-hop neighbors
— "Neighborhood aggregation”

hgj = O'(W(l) . AGGnode({h(ul_l)’vu € ﬁ(v)}))

e Variants-of GNN
— GCN: normalized sum aggregator
— GraphSAGE: MEAN, MAX, SUM, LSTM
— GAT: Attention aggregator

— GIN: Multi-Layer Perceptrons (MLP)



Graph Neural Network

e Architecture challenge

— Tons of GNN models have been designed.
* E.g. 315, 000 GNN models by 12 dimensions.
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Graph Neural Network

e Architecture challenge

— Performance of GNN models vary in different datasets
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It leads to the application of neural architecture search (NAS)

You et al. Design Space for Graph Neural Networks. NeurlPS 2020



Neural Architecture Search

* Neural Architecture Search (NAS)

— Exploring the possibility of automatically searching for
unexplored architectures beyond human-designed
ones.

— Can obtain data-specific models.

* Trial and Error
— |teratively train and evaluate the candidate
architectures until obtaining the best one.

* Search space
* Search algorithm



Neural Architecture Search

e An examplein C

\

N architecture search.
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https://arxiv.org/pdf/1611.01578.pdf

NAS for GNN
* GraphNAS [1]

— The first reinforcement learning method for graph
neural architecture search

— Search space

Mean First-order gat Sum  First-order

Actions Contents
SAM Sample neighbors
ATT Const, gcn, gat, sym-gat, cos
AGG Sum, mean, max, mlp R
| |
HeadsK | 1,2,4,8,16 R - I
e ) B
DIM 16, 32, 64, 128 |§:- %s 2 B j:
ACT Relu, elu, tanh, linear, sigmoid : | {3 :_ |

— Search algorithm

* Update the RNN controller based on the validation accuracy
of the sampled GNN models.

1. Gao et al. Graph Neural architecture search. IJCAI 2020



NAS for GNN

* GraphNAS obtain data-specific GNN models in
different datasets.

— Similar works like Auto-GNN [1]

* However, the RL-based algorithm is inherently
expensive, since it has to train from scratch every
sampled architecture.

— Computational challenge

* Thus, we propose a more efficient method for
graph neural architecture search in this work.

1. Zhou et al. Auto-GNN: Neural architecture search of graph neural networks. Technical Report 2019



Differentiable graph architecture search

e Search to Aggregate Neighborhood (SANE) for
GNN.

e Contributions
— A novel and expressive search space
— Differentiable search algorithm

 Two orders more efficient

— Extensive experiments demonstrate the effectiveness
and efficiency of SANE



Search Space

* Message passing framework
— Node aggregator
* 11 popular aggregators

— Layer aggregator

* Inspired by JK network [1]
* Search to skip or not for each layer.

* The detailed search space

| Operations

SAGE-SUM, SAGE-MEAN, SAGE-MAX, GCN,

Ok GAT,GAT-SYM, GAT-COS, GAT-LINEAR,
GAT-GEN-LINEAR, GIN, GeniePath

O | CONCAT, MAX, LSTM

O, | IDENTITY, ZERO

Xu et al. Representation Learning on Graphs with Jumping Knowledge Networks . ICML 2018
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Search Space

e Compared to human-designed GNNs

| Model ] Node aggregators | Layer aggregators | Emulate by SANE
| GCN[14] | GCN | X | v
| SAGE[3] | SAGE-SUM/-MEAN/-MAX | x | v
|  GAT[4] | GAT, GAT-SYM/-COS/ -LINEAR/-GEN-LINEAR | X | v
Human-designed |  GIN [16] | GIN \ X | v
architectures | LGCN [15] | CNN | X | v
| GeniePath [18] | GeniePath \ x | v
| JK-Network [17) | depends on the base GNN | v | v
NAS \ SANE ] learned combination of aggregators \ v ]

Compared to existing NAS methods for GNN

TABLE III: A detailed comparison between SANE and existing NAS methods for GNN.

| e I Search algorithm

| Node aggregators | Layer aggregators l

GraphNAS, Auto-GNN | v | X | RL
Policy-GNN | X | % | RL
SANE | Vv | v | Differentiable

13



Differentiable search algorithm

* Supernet (DAG) -
— Continuous relaxation IR

— Mixed OPs hy,
I BN
: (1) . .
D) = Y explag”) 7l e s

0c0 20'c0 exp(a(()f’f))

h;

* Computation process
h(zf) = o(wﬁ,’) - én_('{hgll_l),Vu o N(v)})) mmm Node aggregator
Hf“ = lés(h%)), S 53(1‘1]5)‘ 4mmmm Skip Connection

- = K+1
Zy = 0] (Hv ) 4emmmm | oyeraggregator
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Differentiable search algorithm

* Search{a,, as, a;}

hO
12
an
DEFINITION 1 (SANE PrOBLEM). Formally, the general paradigm yyv
............................... »
of SANE is to solve a bi-level optimization problem: h | s
min L,,,;(w* (@), @), s.t. w'(@) = argmin Lrqgin(w, @), (6)
aEﬂ w AAA a
where Lyyqin and L, are the training and validation loss, respec- h ________________ S _____________
tively. a represent a network architecture, where @ = {atp, s, )} ‘
and w*(a) the corresponding weights after training.
AAA
h ............................... »)
 ———

 Derive architecture

— Choose the OP with the largest weight.

(£,))

o'bJ) = argmax,, ) @,




e Gradient-based optimization

VaLoa(w (@), @) = Vg Lyg(W—=EVwLirain(w, @), @)

Differentiable search algorithm

— First-order approximation [1]

Algorithm 1 SANE - Search to Aggregate NEighborhood.

Require: The search space ¥, the number of top architectures k,

the epochs for search T.

Ensure: The k searched architectures Ay.

1:
2:
3:

~

whilet =1,---,T do
Compute the validation loss £, ,;;
Update «;, as and «; by gradient descend rule Eq. (7) with
Eq. (3), (4) and (5) respectively;
Compute the training loss L;rqin;
Update weights w by descending Vy, L, qin(W, @) with the
architecture @ = [a,, as, a;];

end while

: Derive the final architecture based on the trained {e,, a;, a;};

Liu et al.

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH. ICLR 2019

hy

searching

derive
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Experiments

e Datasets and Tasks

— Node classification

* Transductive TABLE V: The statistics of the dataset DBP15K 757 _ -
¢ | N d U Ctive |#Entities #Relations #Attributes #Rel.triples #Attr.triples
E . | . Chinese | 66,469 2,830 8.113 153,929 379,684
- nt Ity d Ig nme nt English | 98,125 2317 L1173 237,674 567,755
* DB task

TABLE IV: Dataset statistics of the datasets in the experi
ments. N, E, F and C denote the number of “Nodes”, “Edges’
“Features” and “Classes”, respectively.

Task Dataset N E F

Cora 2,708 5,278 1,433
Transductive | CiteSeer 3,327 4,552 3,703
PubMed 19,717 44 324 500

W N 2| N

Inductive PPI 56,944 818,716 121 50

17



Experiments

e Node classification

— Baselines

* Human-designed GNNs
— GCN, GraphSAGE, GAT, GIN, LGCN, GeniePath
— GCN-JK, GraphSAGE-JK, GAT-JK, GAT-JK, GIN-JK, GeniePath-JK

* NAS for GNNs
— Random, Bayesian, GraphNAS, GraphNAS-WS

— Settings
e 6:2:2 in transductive
e 10:1:1 in inductive



Performance comparison

Experiments

— Node classification

— Best performance compared to all baselines.
Transductive Inductive
Methods Cora CiteSeer PubMed PPI
GCN 0.8811 (0.0101)  0.7666 (0.0202)  0.8858 (0.0030) | 0.6500 (0.0000)
GCN-JK 0.8820 (0.0118) 0.7763 (0.0136) 0.8927 (0.0037) 0.8078(0.0000)
GraphSAGE 0.8741 (0.0159) 0.7599 (0.0094) 0.8834 (0.0044) 0.6504 (0.0000)
GraphSAGE-JK | 0.8841(0.0015)  0.7654 (0.0054)  0.8942 (0.0066) | 0.8019 (0.0000)
Human-designed | GAT 0.8719 (0.0163)  0.7518 (0.0145)  0.8573 (0.0066) | 0.9414 (0.0000)
avchitechires GAT-JK 0.8726 (0.0086) 0.7527 (0.0128) 0.8674 (0.0055) 0.9749 (0.0000)
GIN 0.8600 (0.0083) 0.7340 (0.0139) 0.8799 (0.0046) 0.8724 (0.0002)
GIN-JK 0.8699 (0.0103)  0.7651 (0.0133)  0.8878 (0.0054) | 0.9467 (0.0000)
GeniePath 0.8670 (0.0123)  0.7594 (0.0137)  0.8846 (0.0039) | 0.7138 (0.0000)
GeniePath-JK | 0.8776 (0.0117)  0.7591 (0.0116)  0.8868 (0.0037) | 0.9694 (0.0000)
LGCN 0.8687 (0.0075)  0.7543 (0.0221)  0.8753 (0.0012) | 0.7720 (0.0020)
Random 0.8594 (0.0072)  0.7062 (0.0042)  0.8866(0.0010) | 0.9517 (0.0032)
Bayesian 0.8835 (0.0072) 0.7335 (0.0006) 0.8801(0.0033) 0.9583 (0.0082)
NAS approaches | GraphNAS 0.8840 (0.0071)  0.7762 (0.0061)  0.8896 (0.0024) 0.9692 (0.0128)
GraphNAS-WS | 0.8808 (0.0101)  0.7613 (0.0156)  0.8842 (0.0103) | 0.9584 (0.0415)
one-shot NAS | SANE | 0.8926 (0.0123) 0.7859 (0.0108)  0.9047 (0.0091) | 0.9856 (0.0120)

19



Experiments

e Searched architectures
— Attention aggregators are more likely to selected

3 , 3 3 3

hv IDENTITY hv h;v IDENTITY hv IDENTITY
GA;-SYM GIN SAGE-MEAN

k i, 2 " " LSTM z, " 4 CONCAT, 2, R 4 CONCAT, 2,
hy IDENTITY -hy hy IDENTITY hy hy hy h‘v IDENTITY hy

GAT GAT GCN GIN

1 _IDENTITY 100 IDENTITY 100 IDENTITY 100 IDENTITY

hy hy hy

GAT-GEN-LINEAR GAT GAT-GEN-LINEAR GAT

hy hy hy hy
(a) Cora. (b) CiteSeer. (c) PubMed. (d) PPL
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Experiments

* Entity alignment
— 2-layer GNN as backbone

— 30% 10% 60% -> train/validation/test
— "GAT-GeniePath"

TABLE VIII: The results of DB task. We use Hits@K as the
evaluation metric, and the results of JAPE and GCN-Align

are from [42]. Note that JAPE is the variant using the same
features as GCN-Align.

| ZH—EN | EN—ZH
| @ @10 @50 | @ @10 @50

JAPE 3332  69.28 86.40 | 33.02 6692 85.15
GCN-Align | 41.25 7438 86.23 | 3649 6994 8245

SANE | 4210 7451 8812 | 3841 7023 8543

More exploration of graph architecture search in DB tasks in future work.

21



Experiments

e Search Efficiency

Test accuracy
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Experiments

e Search Efficiency

— The test accuracy w.r.t. search time (s)
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Experiments

e Ablation Study
— The influence of differentiable search

— The influence of K

1.00, . : : 1.00
‘ e e e—
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(a) Random explore: e. (b) Number of GNN layers: K.
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e Ablation Study

Experiments

— The efficacy of the designed search space

Methods

Cora

CiteSeer

PubMed

PPI

GraphNAS
GraphNAS-WS

0.8840 (0.0071)
0.8808 (0.0101)

0.7762 (0.0061)
0.7613 (0.0156)

0.8896 (0.0024)
0.8842 (0.0103)

0.9698 (0.0128)
0.9584 (0.0415)

GraphNAS(SANE search space)

0.8826 (0.0023)
0.8895 (0.0051)

0.7707 (0.0064)
0.7695 (0.0069)

0.8877 (0.0012)
0.8942 (0.0010)

GraphNAS-WS(SANE search space)

0.9887 (0.0010)
0.9875 (0.0006)

— Failure of searching for universal approximator

TABLE X: The performance of searching for MLP. We list
the best performance of SANE from Table VI as comparison.

Dataset | Random Bayesian | SANE
Cora 0.8698 (0.0011)  0.8470 (0.0032) | 0.8926 (0.0123)

CiteSeer | 0.7298 (0.0078) 0.7103 (0.0057) | 0.7859 (0.0108)

PubMed | 0.8662 (0.0030) 0.8699 (0.0065) | 0.9047 (0.0091)

PPI | 0.8166 (0.0089)

0.8685 (0.0017) | 0.9856 (0.0120)
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Conclusion and Future work

e Conclusion
— We design a novel and effective search space
— We develop a differentiable search algorithm

— Extensive experiments demonstrate the effectiveness
and efficiency of the proposed framework.

e Future work

— More advanced one-shot NAS approaches
e Stochastic Neural Architecture Search (SNAS) [1]

— More tasks
* Open Graph Benchmark [2]

1 Xie et al. SNAS: Stochastic neural architecture search. ICLR 2019
2 Hu et al. Open graph benchmark: Datasets for machine learning on graphs neurlPS. NeurIPS 2020
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Q&A

e Paper & Code

— https://github.com/AutoML-4Paradigm/SANE

— Any questions, open an issue or drop an email to
zhaohuan@4paradigm.com 5] 0

=]

More codes on AutoML research can be found in our Github.
— https://github.com/AutoML-4Paradigm

More works related to AutoGraph can be found in my homepage.
— https://hzhaoaf.github.io/
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