
Beyond Personalization: Social Content Recommendation for
Creator Equality and Consumer Satisfaction

Wenyi Xiao∗, Huan Zhao∗, Haojie Pan∗, Yangqiu Song∗, Vincent W. Zheng†, Qiang Yang†∗
{wxiaoae,hzhaoaf,hpanad,yqsong}@cse.ust.hk;{vincentz,qiangyang}@webank.com

∗Hong Kong University of Science and Technology, Hong Kong
†WeBank, China

ABSTRACT
An effective content recommendation in modern social media

platforms should benefit both creators to bring genuine benefits
to them and consumers to help them get really interesting con-
tent. In this paper, we propose a model called Social Explorative
Attention Network (SEAN) for content recommendation. SEAN
uses a personalized content recommendation model to encourage
personal interests driven recommendation. Moreover, SEAN allows
the personalization factors to attend to users’ higher-order friends
on the social network to improve the accuracy and diversity of
recommendation results. Constructing two datasets from a popular
decentralized content distribution platform, Steemit, we compare
SEAN with state-of-the-art CF and content based recommendation
approaches. Experimental results demonstrate the effectiveness
of SEAN in terms of both Gini coefficients for recommendation
equality and F1 scores for recommendation performance.

CCS CONCEPTS
• Information systems → Recommender systems; Social

recommendation; •Mathematics of computing→ Sequential
Monte Carlo methods;

KEYWORDS
Content Recommendation, Social Recommendation,Monte Carlo

Tree Search, Social Attention
ACM Reference format:
Wenyi Xiao[1], Huan Zhao[1], Haojie Pan[1], Yangqiu Song[1], Vincent
W. Zheng[2], Qiang Yang[2][1]. 2019. Beyond Personalization: Social Con-
tent Recommendation for Creator Equality and Consumer Satisfaction .
In Proceedings of KDD ’19, Anchorage, Alaska, USA, August 04–08, 2019,
11 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Content recommendation, such as news recommendation, has

been studied for many years in recommender systems (RSs). When

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 04–08, 2019, Anchorage, Alaska, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

applying to modern content distribution platforms, such as Face-
book and Steemit1, an effective content recommendation algorithm
should consider both content creators to bring genuine benefits to
them and content consumers to help them get really interesting
contents. While more accurate recommendation can improve the
consumers’ reading experience, it is regarded as a healthier content
distribution ecosystem that encourages individuals, especially small
content creators, to share their creative contents.

However, existing recommendation algorithms still lack consid-
eration for balancing both content creators and consumers. Content
recommendation methods can be content based or collaborative
filtering (CF) based ones. Content based methods [34, 36] memorize
historical reading/watching content of a user and predict his/her
future reading/watching content based on features or similarities
of both contents. Such approaches emphasize on particular topics
for a user and may not be able to encourage diversity of recommen-
dation results unless a content consumer actively searches for new
topics.

CF is considered as a complementary technique to content based
approaches for content recommendation [6] as it can oversee the
global users’ clicking behaviors and make recommendation based
on similar users or similar contents, where similar contents mean
contents clicked/read by the same group of users. CF usually opti-
mizes based on global behavior information so that the platform
will attract more clicks or reading actions. Unfortunately, CF will
produce unintended Matthew’s Effects (“The Rich Get Richer”) [26]
which will hurt small/new content creators who may not be able
to attract attentions. Although most of the traditional CF based
methods are often called personalized recommendation [6, 20]
and can be generalized to social networks using social regular-
ization [4, 9, 21, 31, 39, 41, 42], they are in nature looking at global
information and cannot solve this problem.

There have been a few recommender systems [1, 27] that have
studied the effects related to Matthew’s Effect. However, they are
still CF based recommendation and the recommendation strategies
are relatively simple, e.g., using popularity [27] or quality [1, 3] of
the content. Moreover, one possible way to reduce Matthew’s Effect
is to use mechanism design approaches in game theory [3]. In fact,
the developed strategy (e.g., introducing randomness in recommen-
dation [3]) may hurt consumer’s satisfaction as the recommended
content may be not related to a consumer’s interests, but such effect
has not been considered and discussed yet. As shown in Figure 1,

1Steemit (https://steemit.com/) is a blockchain based social media and decentralized
content distribution platform for consumers and creators to earn Steemit tokens by
playing with the platform and interacting with others. It is regarded as a more effective
content distribution ecosystem that allows small content creators to share their creative
contents while protecting the copyright without any intermediaries.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

50 100 150 200 250 300 350

Day

0.3

0.4

0.5

0.6

0.7

G
in

i

NCF

DKN

SEAN

SEAN w/o Social

Figure 1: Comparison of Gini coefficients of different algorithms
for 368 days using Steemit socialmedia. Gini coefficient is computed
over the distribution of recommendation impression numbers of
content creators. We compared content based DKN [34] (F1=42.85),
NCF [7] (F1=42.14), and our algorithm SEAN with (F1=47.69) and
without any social information (F1=42.40).

we use the Gini coefficient over the distribution of recommendation
impression numbers for content creators on Steemit social media
to demonstrate Matthew’s Effect, as the Gini coefficient is usually
used to measure inequality and large Gini values mean eventually a
small number of content creators dominating the content consump-
tion. We also use the F1 score of prediction to evaluate content
consumer’s satisfaction. From the Figure 1, we can see that the
state-of-the-art CF based approach NCF [7] encourages inequality
more than content based approach DKN [34] although their F1
scores are comparable to each other. Thus, a natural question is
can we have a content recommendation algorithm that can further
benefit content consumers while not hurting creators?

In this paper, we consider both creators and consumers. For cre-
ator equality, we also use a content based approach. However, as
a traditional content based approach, DKN encodes the new in-
coming document into a unique vector (the same vector that will
be compared with all users) and uses this vector to attend to a
user’s historically read documents. In this way, popular content
will still tend to be selected by the final prediction classifier regard-
less of the user’s personal interests. Different from DKN, we use
user-dependent vectors to attend to related words and sentences
in a new incoming document. In this way, we compress a user’s
interests into contextual vectors and use the user-dependent doc-
ument representation vector to feed the final prediction classifier.
This is more compatible with the personalized nature of content
recommendation that can benefit small creators, as long as the cre-
ated content is of the consumer’s interests. As shown in Figure 1,
our model without social information can achieve comparable F1
while significantly reduce the Gini coefficient. A natural way to
further encourage diversity and improve creators equality is to
introduce more randomness as suggested by the mechanism de-
sign approach [3]. We demonstrate this by randomly exploring
other consumers’ interests. However, this mechanism will hurt the
prediction accuracy which reflects the consumer’s satisfaction.

To improve the consumer satisfaction, as the training data for
each user’s context vectors may be too small and cannot train well
for users having less reading history, we allow a user’s context vec-
tors to “attend” to friends’ context vectors and fetch back friends’
reading interests and prediction knowledge by aggregating their
context vectors. Nonetheless, even a user has many one-hop friends,

friends sharing a similar topic of interest may not be enough. There-
fore, we consider the user’s higher-order friends. An extreme case
is that we go over all n-hop friends, and it is likely that we can reach
all connected users in a social network when n is large. Apparently,
it will be too expensive to explore. To remedy this, we develop a
social exploration mechanism based on Monte Carlo Tree Search
(MCTS) [28]. This will be more effective to attend to higher-order
friends. In particular, by using MCTS, we can achieve a good bal-
ance of finding n-hop friends with similar interests and exploring
friends with some randomness for more diverse interests in a so-
cial network. As shown in Figure 1, introducing social information
will significantly improve the F1 score but also increase the Gini
coefficient. Therefore, in the experiments, we systematically study
how different hyper-parameters of including social information can
affect both prediction accuracy and the Gini coefficient.

Our contributions can be highlighted as follows:
•We consider both content creators and consumers in content

recommendation. In particular, we use the Gini coefficient to mea-
sure the inequality of content creators based on recommendation
impressions.
•We propose a novel social explorative attention based recom-

mendation model to use a user’s personal reading history and go
beyond personal data to explore the user’s higher-order friends.
•We construct two datasets of different languages from a popular

decentralized content distribution platform, Steemit. By conduct-
ing extensive experiments, we demonstrate the superiority of our
model over existing state-of-the-art recommendation approaches,
including CF and content based ones, in terms of benefiting both
consumers and creators.

The code and data are available at https://github.com/HKUST-
KnowComp/Social-Explorative-Attention-Networks.

2 OVERVIEW
We propose to use a personalized model to perform content rec-

ommendation, as personalization will encourage the model to find
more relevant contents and less affected by the global information
about popularity and social influence. Then we socialize it to make
the personalized factors be able to attend to friends’ information,
which will further balance the randomness factor to improve the
creator equality and the relatedness factor to improve the recom-
mendation performance. We call our recommendation model Social
Explorative Attention Network (SEAN).

For the document representation, we adopt the hierarchical at-
tention networks [40]. In the word level, the attention is used to
select useful words to construct features to feed to sentence rep-
resentations. In the sentence level, the attention is used to select
useful sentences to construct features for the whole document and
then fed to the final classifier. We use a user-dependent attention
model to personalize the document representation learning. Since
each user has different word and sentence level attentions on a
document, the document representation based on attentions will
be different for different users.

For the user representation, we construct user representation vec-
tors (word and sentence levels) themselves as attentions to his/her
friends’ representation vectors, which is essentially an attention

2

Sentence

Level

Word

Level

User attention

in word level

User attention

in sentence level

Document representation

…

…

CNN CNN

Word Embedding

Concat.

Friends

Candidate document

GRU

S
o
ci

a
l

E
x
p

lo
ra

ti
o
n

Figure 2: The architecture of SEAN. The left side is a social
exploration module which explores high-order friends for
the RS system in the ride side. These friends are incorpo-
rated with the user to build the user’s representation vector
in word and sentence levels, respectively. The right side is a
hierarchical architecture fromCNN layer to encodewords to
GRU layer to encode sentences in the document. The user’s
representation vectors are used to attend to importantwords
and sentences in the candidate document.

over attention model. To enable the attention over attention mech-
anism to use more information, we propose to explore a user’s
higher-order friends. The overview architecture of our model is
shown in Figure 2.

3 SEAN RECOMMENDATION MODEL
The recommendation task is to predict whether a target user u

will click a given document d . Here we use the textual document
recommendation as an example for content recommendation. We
assume that we have a social graph G = (U, E). Our goal is to
learn a prediction function p = F (u,d,θ), where p represents the
probability that user u will click a given document d , and θ denotes
the model parameters of function F .

3.1 Socialized Document Representation
Assume that a document has I sentences and each sentence

contains J words.wi j represents the j-th word in sentence si with
the indices i ∈ [0, I] and j ∈ [0, J]. We use a hierarchical architecture
to learn the document representation.

3.1.1 Word Level Personalization. We use pre-trained word em-
beddings for words and fix them during training. The embedding of
each word can be calculated as wi j =Weewi j , i ∈ [0, I] , j ∈ [0, J] ,
where We is the embedding matrix for all words and ewi j is a one-
hot vector to select one word embedding vector wi j for wi j . We
concatenate all word embeddings in a sentence to form a sentence
matrixWi ∈ R

D×J for sentence si , where D is the dimension size

of the embedding vector of each word. We then use a convolu-
tional neural network (CNN) [11] to represent sentences in the
document. Here, we apply a convolution operation onWi with a
kernel Kk ∈ Rд×r×D , k ∈ [0,K] among K kernels of width д and
filter size r to obtain the feature fk :

fki j = relu (Wi [∗, j : j + д − 1] ⊙ Kk + bk) , (1)

where j ∈ [1, J − д + 1] is the iteration index of convolution, fki j ∈
Rr is regarded as j-th CNN feature by the k-th kernel Kk , and the
bias vector bk in i-th sentence.

We then feed each CNN features fki j to a non-linear layer, param-
eterized by a global weight matrix Ww ∈ R

h×r×K to get a hidden
representation fki j

′. h and r are pre-defined dimensions of hidden
vectors. We measure the importance of the word towards the target
user as the similarity of fki j

′ and the word-level user’s socialized
representation vector xw (which will be introduced in Section 3.2).
The sentence representation vector ski by CNN with kernel size k is
computed as a weighted sum based on the soft attention weights:

fki j
′
= tanh(Wwhi j + bw), (2)

αi j = Softmax(x⊤w fki j
′
), (3)

ski =
∑
j
αi j fki j , (4)

where the superscript ·⊤ represents the vector or matrix transpose.
All representation vector ski are concatenated together and taken as
the sentence embedding si for sentence si as: si =

[
s1i , s

2
i , ..., s

K
i
]
.

3.1.2 Sentence Level Personalization. At the sentence level, we
use a bidirectional Gated Recurrent Unit network (BiGRU) [2] to
compose a sequence of sentence vectors into a document vector.
The BiGRU encodes the sentences from two directions:

hi =
−−−→
GRU (si) | |

←−−−
GRU (si). (5)

After getting hi for sentence si , we use the sentence level user repre-
sentation vector xs to extract relevant sentences that are interested
by the target user and get a final document representation d by soft
attention mechanism similar to sentence representation. We omit
the details of equations due to the lack of space and the similarity
with the word level computation. As shown in the right side of
Figure 2, we have two layers of feature extraction networks. This
architecture is inspired by [40] since it is better for long document
modeling. In our model, we use CNN instead of RNN for word level
since in practice we found that CNN is faster, more robust, and less
easy to overfitting on our datasets. Moreover, different from [40],
we use socialized user representation vectors instead of unified
representation vectors for attending to words and sentences.

3.2 Socialized User Representation
We denote eu as a one-hot vector of user u and retrieve the

word level user representation uw from a trainable embedding ma-
trix A ∈ Rh×|U | by using Aeu , where h is the size of attention
vectors. We can get the user’s sentence-level representation by an-
other trainable embedding matrix A′ in the same way. We design a
social attention module to enrich a user’s representation by incor-
porating his/her friends’ representations. Let yi ∈ Rh , i ∈ {1, 2, ...}

3

be his/her friends’ word-level representation vectors, and denote
y0 = uw . The attention mechanism produces a representation xw
as a weighted sum of the representations vectors yj , j ∈ {0, 1, 2, ...}
via

α j = Softmax(LeakyReLU(w⊤
[
Wyuw | |Wyyj

]
)), (6)

xw =
∑
j
α jWyyj , (7)

where Wy ∈ R
h×h is a shared linear transformation and | | is the

concatenation operation. The attention mechanism is a single-layer
feedforward neural network, parametrized by a weight vector w ∈
R2h , and applying the LeakyReLU nonlinearity.

Similarly, we can get the sentence-level user representation xs
by the attention of high-order friends’ representation vectors.

3.3 Prediction and Learning
Finally, we use a dense layer to predict the probability that the

target user u will read the candidate document d :

p = Softmax(w⊤д d + b), (8)

where wд ∈ R
2h is a global trainable weight vector trained by all

the samples. d is the document representation vector obtained from
Section 3.1.

Due to the nature of the implicit feedback and the task of item
recommendation, we adopt the binary cross-entropy loss to train
our model:

L(θ) = −
1
M

M∑
m=1
[ym log(pm) + (1 − ym) log(1 − pm)] , (9)

wherem is the index of a sample,M is the total number of training
samples, ym ∈ {0, 1} is the label, and θ denotes the set of model
parameters. The negative samples are formed from the documents
that the target user does not make response to while his/her friends
make.

During training and testing, we train the model with the data of
past t days and test it with the data on (t + 1)-th day. The model
dynamically adapts to new data day-by-day.

3.4 Complexity Analysis
For the word level, the time complexity is linear to the number

of tokens in the training data set, which isM · I · J , whereM is the
number of training samples, I is the maximum number of sentences,
and J is the maximum number of tokens in a sentence. It is also
linear to the number of kernels K , the numbers of hidden vectors h,
the filter size r , and the convolutional window size д. Since we use
fixed-sized word embeddings, the large number of words do not
contribute to our time cost. For the sentence level, the time cost of
the GRU layer is linear to the maximum number of sentences I and
the number of parameters in the GRU cell PGRU . For both word-
level and sentence-level attentions, the cost is linear to the square
number of hidden dimension h2, the number of selected friends
L, and the times of trials of attention B. Note that the number of
selected friends L and the times of trials of attention B are the same
to the search depth L and beam width B introduced in Section 4.
Moreover, for the fully connected layer, the parameter is linear to

h. Therefore, the overall time complexity is O(M · I · J · (K · д · r ·
D + h · r · K + h2 · L · B) +M · I · (PGRU + h

2 · L · B)).

4 SOCIAL EXPLORATION
In this section, we first introduce how we use MCTS for friends

selection, and then further enhance MCTS with beam search.

4.1 Selecting Friends with MCTS
Monte Carlo Tree Search (MCTS) [28] is a stochastic search

algorithm to find an optimal solution in the decision space. It models
an agent that simultaneously attempts to acquire new knowledge
(called “exploration”) and optimize the decisions based on existing
knowledge (called “exploitation”). MCTS uses the upper confidence
bounds one (UCB1) [12] value to determine the next move a from
a viewpoint of multi-armed bandit problem. The selection strategy
is defined by:

a = argmax
v
{Qt (v) + λ ·Ut (v)}, (10)

where Qt (v) denotes the empirical mean exploitation reward of
node v at time t and Ut (v) is the utility to explore node v . This
equation clearly expresses the exploration-exploitation trade-off:
while the first term of the sum tends to exploit the seemingly opti-
mal arm, the second term of the sum tends to explore less pulled
arms. λ is used to balance the two terms.

Here we explain how MCTS guides to generate a path with
a fixed number of search depth L, regarded as L friends of u by
walking through the social graph. We denote the target user u
as the starting node c0 and denote cl , l ∈ [0,L] as the l-th node
added for u in the path. On day t at search step l , the node cl+1
is retrieved from the neighbors of node cl . We calculate the score
for each neighbor according to Eq. (10) and choose the neighbor
with the maximum score as the (l + 1)-th friend of the user u. The
design of calculating the values from exploitation and exploration
are mentioned below.

4.1.1 Exploitation. On day t , we compute the Qt (v) to get the
exploitation reward of neighbor node v . In our scenarios, we want
to select those as friends who can improve the recommending
performance as much as they can. In this work, we design four
exploitation strategies to select friends for maximizing Qt (v): the
average F1 from RS model (SEAN-RS-F1), static PageRank value
from social network (SEAN-SPR), dynamic PageRank value from
activity network (SEAN-DPR), as well as the actual payout each
user earned in blockchain platforms (SEAN-Payout).

SEAN-RS-F1.We regard the average F1 evaluated based on our
RS model of each neighbor node v up to time t as the exploitation
reward Qt (v). This is based on the assumption that a user who has
been well-learned by the RS model is reliable and could be exploited
as a friend for the target user u in the future. In this way, the RS
prediction results can guide the friend exploration process, and in
turn, the friend exploration process provides useful friends to help
enrich the target user’s representation.

SEAN-SPR. The second way is to use the PageRank value of
v obtained from social network as exploitation reward Qt (v). In
[38], Xiang et.al. explicitly connect PageRank with social influence
model and show that authority is equivalent to influence under
their framework. Thus, we assume that a node with high PageRank

4

Figure 3: MCTS for social exploration. We illustrate our MCTS based strategy with this example. We set the beam width and
search depth to 2. The node "1" represents the target user. We initialize 2 paths according to the beam width and add "1" to
each path. In the Selection step, we calculate the scores by Eq. (10) of "1"’s neighbors ("2", "3", "4", "5") and select two nodes
with the largest scores ("3", "4") and add them to each path. In the Expansion step, we calculate the scores for the neighbors of
both "3" and "4", and again select two nodes ("7", "8") among all the neighbors. In the Evaluation step, the two generated path
("1"->"3"->"7" & "1"->"4"->"8") are input to RS model mentioned in Section 3. In the same way, we get the paths for other nodes.
In the Backup step, we update Qt (1) from the result at Evaluation andUt (3),Ut (4),Ut (7),Ut (8) from Selection & Expansion.

value in the social network is influential and should be exploited as
a friend for the target user u.

SEAN-DPR. On social media platforms, each user can not only
make activities on the documents (as a consumer) but also create
documents (as creator). We build a dynamic activity network and
calculate the PageRank values of nodes. Compared with the social
network, the edges in the activity network are the consumer-creator
connection.

SEAN-Payout. In some blockchain based social platforms, the
platform would give some rewards, i.e., bitcoin, to those users who
help distribute the documents, i.e., post or forward a document in
the platform. We regard the payout that a user gains as the value
of his/her exploitation value Qt (v).

4.1.2 Exploration. We design the exploration mechanism to get
the explored rewardUt (v) for friend v as follows:

Ut (v) =

√
logNt (cl)

Nt (v) + 1
, (11)

where Nt (cl), Nt (v) denote as the times that the current node cl at
search step l and the neighbor node v have been selected as friends
up to day t , respectively. The goal of the exploration is to select the
nodes who have less been explored in the past.

4.2 Obtaining Multi-paths with Beam Search
If we want to find higher-order friends, we can greedily select

the next node with a maximum score from the neighbors of the
current node at search step l . In this way, we would get a path of
higher-order friends. If we want to find more than one paths, it is
time-consuming to get a globally optimal set of paths. Therefore,
we combine MCTS with beam search [13] to balance the optimal-
ity and completeness. At search step l , we choose the neighbors
with largest B scores from Eq. (10) and these B nodes are selected
for further expansion. Here B is the beam width. In this way, we
generate B paths for the target user u. For training and testing, we
obtain B prediction results by using each path and u and compute
the average of these results to get the final prediction. We give a

Table 1: Statistics of the two datasets.

Steemit-English Steemit-Spanish

Duration (days) 370 126
Consumers 7,242 1,396
Creators 44,220 4,073
Relations 273,942 25,593
Documents 177,134 14,843

Avg. word per document 290 509
Logs 220,909 20,893

Samples 684,752 92,236

concrete example of MCTS for social exploration, shown in Figure
3. We introduce how we select friends based on beam MCTS in
Algorithm 1 and how it is used to train SEAN in Algorithm 2 in
Appendix A.

5 EXPERIMENTS
5.1 Dataset Description

We build two datasets from the decentralized social platform,
Steemit. Steemit is a blogging and social networking platform that
uses the Steem blockchain to reward creators and consumers. Most
of the modern content distribution platforms are already using
recommendation systems to recommend contents to users, which
can be biased if we collected data from them for our evaluation. Dif-
ferent from them, the contents and user clicks are not manipulated
by the Steemit platform. We retrieve the commenting activities
of users (consumers) from June 2nd, 2017 to July 6th, 2018. Two
datasets are constructed based on social communities using English
and Spanish respectively.

We form a sample as a triplet with three elements: a given user,
a document, and a label 1/0. We form the positive samples by the
documents which users have made comments. We treat messages
that users’ friends have made responses but the users themselves
do not as negative samples. Since we collect users’ activities infor-
mation from their comment logs, it is natural that the number of
users who made comments on this platform is not too much. The
statistics of the two datasets are shown in Table 1.

5

5.2 Evaluation Metrics
To evaluate the recommendation quality of the proposed ap-

proach, we use the following metrics: Area under the Curve of
ROC (AUC) and F1 for consumer satisfaction and the Gini coef-
ficient for creator inequality, where Gini coefficient is defined as:
Gini =

∑n
i=1(2i−n−1)xi
n
∑n
i=1 xi

, x is an observed value, n is the number of
values observed, and i is the rank of values in ascending order. To
measure the performance of models considering both creators and
consumers, we calculate the harmonic mean of F1 and (1-Gini),
denoted as C&C:

C&C =
2 × (1 − Gini) × F1
(1 − Gini) + F1

. (12)

Since we train and test day-by-day, we compare a model’s quality
by the average of each metric during the whole peorid. For AUC,
F1, and C&C, the larger, the better. For Gini, the smaller, the better.

5.3 Baselines
We compare our model with following baselines.
LR [32] is the simplest word-based model for CTR prediction.

We use TF-IDF to extract keywords for a user’s clicked historical
documents and the new incoming document and feed them to a
logistic regression model to predict the label.

LibFM [25] is a state-of-the-art feature-based factorizationmodel
and widely used in CTR prediction. In this paper, we use the same
features as LR and feed them to LibFM. LibFM treats a user’s fea-
tures and a document’s features separately for the factorization.

DKN [34] learns representations of documents and users. In
DKN, it obtains a set of embedding vectors for a user’s clicked
historical documents.

Then an attention is applied to automaticallymatch the candidate
document to each piece of his/her clicked documents, and aggregate
them with different weights. Here, we only use DKN’s base model
without the knowledge graph information.

NCF [7] is short for Neural network based Collaborative Fil-
tering. It is a deep model for recommender systems which uses a
multi-layer perceptron (MLP) to learn the user−item interaction
function. It ignores the content of news and uses the comment
counting information as input.

SAMN [4], Social Attentional Memory Network, is a collabora-
tive filtering model which employs the attention-based memory
module to attend to a user’s one-hop friends’ vectors. The attention
adaptively measures the social influence strength among friends.

SEAN, if without any clarification, is SEAN-RS-F1, which is our
model using F1 score as the exploitation value.
5.4 Experimental Settings

For our framework, we use pre-trained word embeddings for
the document and fix them during training. For the word-level
representation in the CNN layer, the filter number is set as 50 for
each of the window sizes ranging from 1 to 6. The hidden vector
size is set to 128 for both GRU layers and dense layers. The beam
width B is set to 3 and λ is set to 1. The search depth L is set to 20.
We train the model for 6 epochs every day. The data in every day
is split to 9:1 for training and validation. We train the model from
the data of past t days and test it by using the data on t + 1-th day.
More experimental settings are shown in Appendix B.

The key parameter settings for baselines are as follows. For
the keyword extraction in LR and LibFM, we set the number of
keywords for document and user’s historical readings as 20 and
90. For DKN, the length of the document embedding is set to 200
and due to the limitation of memory, and we use a user’s latest 10
clicked documents to represent the user. The above settings are for
fair consideration. Each experiment is repeated five times, and we
report the average and standard deviation as results.

5.5 Results and Analysis
Table 2 reports the results on Steemit-English and Steemit-Spanish

datasets. For consumers, SEAN improves F1 by above 5 percent-
age point and AUC by near 3 percentage point compared with the
best content-based model DKN on Steemit-English and improves
F1 by 1.7 percentage point and AUC by near 3 percentage point
on Steemit-Spanish. This proves that our model can best consider
consumer’s personal interests and recommend the most interesting
contents to them. LR and LibFM performmuch worse because these
two models ignore the word order information and consequently
generate worse document and user representations. Moreover, com-
pared with CF-based models (NCF and SAMN), SEAN can also
outperform them significantly. This result shows that CF methods
cannot work well in this recommendation scenario since the docu-
ments on Steemit is highly time-sensitive, and the content should
be considered for the recommendation. Besides, from the compari-
son with the SAMN, we can see that our strategy to incorporate
social information is more effective than SAMN. We also present
a one-year F1 performance of SEAN and DKN on Steemit-English
in Figure 7 in Appendix D. It further shows that our model has a
better performance in most of the days.

For creators, the Gini coefficients of the content-based models
are smaller than those of the CF-based models. The result proves
our aforementioned claim that CF methods are more likely to suf-
fer from Matthew’s effect since CF-based models intend to use
global behavioral information to promote popular documents on
the social platform. The Gini coefficients of SEAN and DKN are
comparable, which shows that under the premise of the quality of
recommendation for consumers, our algorithm can also encourage
creator’s equality which may further encourage creators to stay on
the platform to keep publishing their innovative contents.

From the harmonic mean C&C results, we observe that SEAN
performs best on both datasets. This demonstrates that the social
exploration mechanism can have a good balance on optimizing
between consumer satisfaction and creator equality.

5.6 Different Strategies in Social Exploration
In this experiment, we evaluate the performance of different

exploitation-exploration methods using Steemit-English dataset.
“Random Select” is the model which randomly selects a set of users
on the social platform as the target user’s friends. “Random Walk”
is the model which uses a stochastic process, moving from a node
to another adjacent node. These two models are both using random
based strategy to explore. As shown in Table 3, MCTS based models
have better F1 than random based models, because the exploita-
tion mechanism can help the model find more relevant friends.
SEAN-RS-F1 performs the best on F1 because this model tends to

6

Table 2: Comparison of different methods on Steemit datasets. The best results are highlighted in boldface.

Steemit-English Steemit-Spanish
AUC F1 Gini C&C AUC F1 Gini C&C

NCF 52.83±0.13 42.14±0.21 66.04±0.25 37.71±0.22 50.46±0.21 35.02±0.26 58.13±0.34 38.14±0.29
SAMN 53.05±0.35 42.28±0.45 65.98±0.21 37.80±0.28 51.10±0.24 35.24±0.31 58.29±0.32 38.20±0.31
LR 52.89±0.07 34.50±0.11 62.89±0.11 35.86±0.11 53.15±0.06 36.50±0.29 55.84±0.09 39.97±0.14

LibFM 50.01±0.12 40.43±0.22 66.42±0.13 36.79±0.16 47.71±0.30 22.37±0.33 56.50±0.21 29.55±0.26
DKN 62.71±0.22 42.85±0.45 62.29±0.26 40.22±0.33 57.02±0.39 41.27±0.45 53.98±0.25 43.52±0.32
SEAN 65.57±0.17 47.69±0.46 61.78±0.24 42.43±0.33 59.98±0.34 42.99±0.37 53.99±0.23 44.46±0.28

Table 3: Comparison of social exploration methods.

Models F1 Gini C&C

Random Select 42.48±0.38 59.13±0.22 41.09±0.28
Random Walk 45.05±0.39 60.98±0.09 41.77±0.20
SEAN-RS-F1 47.69±0.46 61.78±0.24 42.43±0.33
SEAN-SPR 45.99±0.35 60.90±0.32 42.27±0.33
SEAN-DPR 45.96±0.44 60.98±0.22 42.21±0.29

SEAN-Payout 46.26±0.36 60.65±0.40 42.53±0.37

explore friends of higher quality continuously by directly using the
recommendation feedbacks. The F1 performance of SEAN-SPR and
SEAN-DPR are compatible, while both are worse than the others
since SEAN-SPR uses the static social network and SEAN-DPR only
uses the daily comment network formed by consumer-creator con-
nections, both missing some information. Moreover, MCTS based
models also outperform random based models on C&C, which in-
dicates that our model can improve the recommendation quality
for consumers even though slightly hurts the equality. Specifically,
SEAN-Payout has the highest C&C which indicates that using pay-
out, the rewards given by Steemit as the exploitation value, is more
suitable to select friends on this platform. Meanwhile, it further
verifies the decentralized nature of this platform.

5.7 Model Ablation Study
We further compare variants of our SEAN model in terms of fol-

lowing aspects to demonstrate the efficacy of the framework design:
the use of social connections, the use of social attention, the use
of friend exploration, and different components in the hierarchical
document representation. The results are shown in Table 4.

For the consumer side, we can conclude as follows.
• Without any social information means that we are using a

pure personalization model for each user. This will decrease F1
by 5 percentage point. This confirms the efficacy of using social
information in the SEAN model.
•We also replace social attention with simple averaging friends’

representation vectors. This results in a loss of F1 by near 3 per-
centage point. In other words, it demonstrates the effectiveness of
weighing different social influences from friends on recommenda-
tion performance.
• We use each user’s first-order (one-hop) friends for social-

ization. This is also worse than SEAN with exploring high-order
friends, which proves the importance of exploring friends for rec-
ommendation.
•We test howCNN forword-level encoding andGRU for sentence-

level encoding affect the performance. The usage of CNN and GRU
brings about 2 percentage point gain on F1 respectively. Without
using GRU and CNN decreases F1 by more than 3 percentage point.

For the creator side, the Gini coefficient of SEANw/o social is the
lowest one, followed by SEAN with one-hop friends. The reason is

Table 4: Comparison of different variants on SEAN.

Variants F1 Gini C&C

w/o social 42.40±0.30 58.56±0.43 41.91±0.35
w/o social attention 44.79±0.17 62.22±0.36 41.98±0.23
one-hop friends 43.08±0.16 60.85±0.25 41.04±0.20

w/o CNN 45.25±0.22 59.98±0.26 42.58±0.21
w/o GRU 45.07±0.31 60.47±0.14 42.12±0.27

w/o CNN & GRU 44.08±0.26 60.06±0.20 41.91±0.25
SEAN 47.69±0.46 61.78±0.24 42.43±0.33

that without using any social information, users are not influenced
by other users’ reading histories, thus cutting off the spread of
popular documents. Besides, using the first-order connections is
worse than using high-order social information. For models without
GRU and/or CNN components, Gini drops within 2 percentage
point while F1 also drops. The best result of C&C indicates that
our model can obviously improve consumers’ satisfaction without
hurting equality too much.

5.8 Hyper-parameter Sensitivity
SEAN involves a number of hyper-parameters. Here, we evaluate

how different choices of hyper-parameters in social exploration
affect the performance of SEAN. In the following experiments,
except for the parameter being tested, all other parameters are
set as introduced in Appendix B.1 if we do not point out. The
parameter sensitivity is done by using the samples from Steemit-
English during the first 100 days.

Search Depth L. We test the influence of search depth L for
four proposed models with L = 5, 10, 15, 20, 25. The results are
shown in Figure 4(a). Given the best settings shown in Appendix
B.1, changing L from 5 to 25 does not affect both F1 and Gini a lot
compared to the beam width B. This may indicate that given the
Steemit network and the prediction F1 score, using a small number
of friends can already cover most of the friends to explore while
increasing B will force the exploration to find more neighbors.

Beam width B.We investigate the influence of the beam width
B (number of paths) by setting B ranging from 2 to 10. The results
are shown in Figure 4(b). We can see that F1 increases as the beam
width grows since there are more selected friends that are helpful
for the user. While with continuing increasing of B, F1 tends to be
flat since the overlapping of friends selected from each path also
increases. Meanwhile, Gini continuously increases when the beam
width increases and thus C&C appears to be best only when B is 4.

Trade-off constant λ. The choice of the exploration/exploita-
tion trade-off constant λ is set to be λ ∈ {0.01, 0.1, 1, 10, 100}. We
can see in Figure 4(c), the best F1 is at λ = 1 for all approaches. It
indicates that both exploration and exploitation are important to
better select friends. Besides, Gini is less influenced by λ.

More hyper-parameter evaluations are shown in Appendix C.
7

5 10 15 20 25

L

0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

5 10 15 20 25

L

0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

5 10 15 20 25

L

0.42

0.44

0.46

0.48

C
&

C

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(a) Search depth L.

2 4 6 8 10

B

0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

2 4 6 8 10

B

0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

2 4 6 8 10

B

0.42

0.44

0.46

0.48

C
&

C

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(b) Beam width B .

0.01 0.1 1 10 100
0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

0.01 0.1 1 10 100
0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

0.01 0.1 1 10 100
0.42

0.44

0.46

0.48

M
e

a
n

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(c) Trade-off λ.

Figure 4: Hyper-parameter sensitivity analysis using the samples from Steemit-English during the first 100 days.

5 10 15 20 25

L

4600

5200

5800

R
u
n
n
in

g
 t
im

e
(s

)

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(a) Search Depth L.

1 2 3 4 5 6 7 8 9 10

B

0

5000

10000

15000

R
u
n
n
in

g
 t
im

e
(s

)

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(b) Beam Width B .

Figure 5: Running time w.r.t. L and B.

5.9 Scalability
The training complexity of SEAN is dominated by the search

depth L and the beam width B as explained in Section 3.4. As shown
in Figure 5, the time consumption of SEAN with four different
exploitation methods is almost linear to L and B.

6 RELATEDWORK
For content recommendation, both content based approaches

and CF based approaches have been studied. Content based ap-
proaches use a user’s historical reading contents to represent a
user, so they are naturally personalized models. Typical models that

recommend documents include [29, 34, 36]. CF based approaches,
including traditional ones [6, 8, 14–16, 20, 25, 42] and deep learning
based models [4, 7, 18, 31, 33], are also usually called personalized
recommendation, as they consider a user’s personal preference
based on the user’s behaviors or actions on the platform. There
have been many approaches also incorporating social informa-
tion into CF models, which are usually called social regulariza-
tion [9, 21, 31, 39, 41, 42]. More recently, [4, 30] propose to use
social attention instead of regularization to further improve the
way of using social information in CF models. Our work goes be-
yond social regularization of a personalized model. We propose
to use a social exploration mechanism to attend to higher-order
friends. In this way, we can find a good balance of using trusted
users and explore more users rather than one-hop friends.

Exploitation-Exploration of items is also a hot topic in RS field [5,
10, 17, 19, 22, 24, 35, 43]. Exploring more items can introduce more
diversity in recommendation results. However, they still only use
the click-through rate (CTR) to evaluate their models. That means
most of them still focus on optimizing the performance of rec-
ommendation, which only benefits consumers and the platform.
Moreover, they are still working on traditional user-item based
collaborative filtering settings. There is a lack of studies on content
recommendation and focusing on the creators of the contents. To

8

our knowledge, we are the first work that considers using the Gini
coefficient combined with F1 as a core metric to evaluate different
recommendation algorithms. Some existing work, such as [27], has
used the Gini coefficient to evaluate Matthew’s Effect of a RS. How-
ever, they have not simultaneously considered recommendation
performance.

In addition to recommendation algorithms, mechanism design,
e.g., [37], is considered as an orthogonal perspective to improve
an RS. The related studies to improve the item equality have been
shown in [1, 3].

7 CONCLUSIONS
In this paper, we present a model that goes beyond personal-

ization by exploring higher-order friends in a social network to
help content recommendation. In the model design and the explo-
ration design, we consider the effects for both content creators
and consumers in the social media platform. This can benefit the
platform to attract more innovative content creators and encourage
more interactions between the creators and consumers. We use
datasets derived from a decentralized content distribution platform,
Steemit, to evaluate our proposed framework. Experimental results
show that we can improve both creator’s equality and consumer’s
satisfaction of recommendation results.

ACKNOWLEGEMENT
This paper was done when the first author was an intern at

WeBank AI Department. The authors of the paper were also par-
tially supported by the Early Career Scheme (ECS, No. 26206717)
from Research Grants Council in Hong Kong and WeChat-HKUST
WHAT Lab. We also thank Intel Corporation for supporting our
deep learning related research.

REFERENCES
[1] Andrés Abeliuk, Gerardo Berbeglia, Pascal Van Hentenryck, Tad Hogg, and

Kristina Lerman. 2017. Taming the Unpredictability of Cultural Markets with
Social Influence. In WWW. 745–754.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Franco Berbeglia and Pascal Van Hentenryck. 2017. Taming the Matthew Effect
in Online Markets with Social Influence. In AAAI. 10–16.

[4] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Social attentional
memory network: Modeling aspect-and friend-level differences in recommenda-
tion. In WSDM. 177–185.

[5] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2018. Large-scale Interactive Recommendation with
Tree-structured Policy Gradient. arXiv preprint arXiv:1811.05869 (2018).

[6] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. InWWW.
271–280.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[8] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[9] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In RecSys. 135–142.

[10] Thorsten Joachims, Dayne Freitag, and Tom M. Mitchell. 1997. Web Watcher: A
Tour Guide for the World Wide Web. In IJCAI (1). Morgan Kaufmann, 770–777.

[11] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[12] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In ECML. 282–293.

[13] Philipp Koehn. 2004. Pharaoh: a beam search decoder for phrase-based statis-
tical machine translation models. In Conference of the Association for Machine
Translation in the Americas. 115–124.

[14] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426–434.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[16] Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio.
2016. LLORMA: local low-rank matrix approximation. The Journal of Machine
Learning Research (JMLR) 17, 1 (2016), 442–465.

[17] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In WWW. 661–
670.

[18] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In SIGKDD. 305–314.

[19] Elad Liebman, Piyush Khandelwal, Maytal Saar-Tsechansky, and Peter Stone. 2017.
Designing Better Playlists with Monte Carlo Tree Search.. In AAAI. 4715–4720.

[20] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news
recommendation based on click behavior. In IUI. 31–40.

[21] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. 2011. Recommender systems with
social regularization. In WSDM. 287–296.

[22] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson, and Rishabh Mehrotra. 2018. Explore, exploit, and
explain: personalizing explainable recommendations with bandits. In RecSys.
31–39.

[23] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543.

[24] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse
rankings with multi-armed bandits. In ICML (ACM International Conference
Proceeding Series), Vol. 307. ACM, 784–791.

[25] Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 57.

[26] Daniel Rigney (Ed.). 2010. The Matthew Effect, How Advantage Begets Further
Advantage. Columbia University Press.

[27] Matthew J. Salganik, Peter Sheridan Dodds, and Duncan J. Watts. 2006. Experi-
mental Study of Inequality and Unpredictability in an Artificial Cultural Market.
Science 311, 5762 (2006), 854–856.

[28] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529 (2016), 484–503.

[29] Jeong-Woo Son, A Kim, Seong-Bae Park, et al. 2013. A location-based news article
recommendation with explicit localized semantic analysis. In SIGIR. 293–302.

[30] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian
Tang. 2019. Session-Based Social Recommendation via Dynamic Graph Attention
Networks. In WSDM. 555–563.

[31] Peijie Sun, Le Wu, and Meng Wang. 2018. Attentive recurrent social recommen-
dation. In SIGIR. 185–194.

[32] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In NIPS. 2643–2651.

[33] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In SIGKDD. 1235–1244.

[34] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
Knowledge-Aware Network for News Recommendation. InWWW. 1835–1844.

[35] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. 2014. Exploration in interac-
tive personalized music recommendation: a reinforcement learning approach.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 11, 1 (2014), 7.

[36] Xuejian Wang, Lantao Yu, Kan Ren, Guanyu Tao, Weinan Zhang, Yong Yu, and
Jun Wang. 2017. Dynamic attention deep model for article recommendation by
learning human editors’ demonstration. In SIGKDD. 2051–2059.

[37] Yan Zheng Wei, Luc Moreau, and Nicholas R. Jennings. 2005. A market-based
approach to recommender systems. ACM Trans. Inf. Syst. 23, 3 (2005), 227–266.

[38] Biao Xiang, Qi Liu, Enhong Chen, Hui Xiong, Yi Zheng, and Yu Yang. 2013.
PageRank with Priors: An Influence Propagation Perspective.. In IJCAI. 2740–
2746.

[39] Xiwang Yang, Harald Steck, and Yong Liu. 2012. Circle-based recommendation
in online social networks. In SIGKDD. 1267–1275.

[40] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In NAACL.
1480–1489.

[41] Mao Ye, Xingjie Liu, and Wang-Chien Lee. 2012. Exploring social influence for
recommendation: a generative model approach. In SIGIR. 671–680.

[42] Huan Zhao, Quanming Yao, James T. Kwok, and Dik Lun Lee. 2017. Collaborative
Filtering with Social Local Models. In ICDM. 645–654.

[43] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: ADeep Reinforcement Learning Framework
for News Recommendation. In WWW. 167–176.

9

A MCTS BASED BEAM SEARCH ALGORITHM
We show the MCTS based beam search algorithm in Algorithm 1

and how the selected friends are used in the SEAN model training
in Algorithm 2. We initialize paths for users by randomly selecting
users in the social graph and set users’ explored times by the times
they selected as friends. For each user in the t-th day training, we
first explore B sets of friends by MCTS strategy and update the
explored times for these selected friends, consequently updating
the exploration values Ut (v) of them. These B sets of friends are
incorporated with the user as input to the RS model. Then we
update Qt (u) of the target user. The updated results are used for
the t + 1-th day training.

Algorithm 1 SelectFriends(u,B,L).
Input: target user u, beam width B, path length L

Output:
{
Fb (u)

}B
b=1.

1: Initialization:{
Fb (u)

}B
b=1: Fb (u) records the b-th path starting from u;

UCB1(v): UCB1 score for user v according to Eq. (10);{
Tb (u)

}B
b=1: Tb (u) records the sum of UCB1 scores of the b-th

path for user u during beam search;
∆b :the neighbours of the tail node of the path Fb (u) during
beam search;

2: while k = 0, 1, 2, · · · , L: do
3: H =

⋃B
b=1

{
UCB1(v) +Tb (u),v ∈ ∆b

}
;

4: while b = 1, 2, · · · , B: do
5: v = argmaxv H ;
6: Fb (u) ← Fb (u)

⋃
v ;

7: H ← H \ (UCB1(v) +Tb (u));
8: end while
9: end while

Algorithm 2 SEAN.

1: for t = 1, 2, · · · do
2: for u ∈ U do
3: {Fi (u)}

B
b=1 = SelectFriends(u, B, L)

4: for b = 1, 2, · · · ,B do
5: Train SEAN with Fb (u) for u;
6: for v ∈ Fb (u) do
7: Nt (v) ← Nt (v) +

1
B ;

8: UpdateUt (v) according to Eq. (11);
9: end for
10: Update Qt (u) for user u according to Section 4.1.1;
11: end for
12: end for
13: end for

B EXPERIMENTAL SETTINGS
In this section, we present the detailed configuration of the SEAN

model in different experiments.

B.1 More Experimental Settings
In this part, we present the hyper-parameters we used for train-

ing SEAN when comparing with other baselines. The configuration
is shown in Table 5.

Table 5: Hyper-parameters of SEAN when comparing with
other baselines.

Hyper-paramter Value

train:validation 9:1
beam width B 3
search depth L 10

trade-off constant λ 1
max number of sentence 30
max number of word 100
word embedding size 300

PageRank α for SPR & DPR 0.9
threshold for F1 0.5

user embeeding size & hidden size h 64
number of CNN kernels K 6

convolutional window size c for K kernels 1,2,3,4,5,6
epochs for training per day 3

batch size 128
dropout rate 0.2

B.2 Initialization Details
Kernel Initialization. Initializers for the kernel weights matri-

ces in CNN & RNN are Xavier normal initializer:Var(W) = 2
nin+nout

,
whereW is the initialization distribution for the neuron in CNN &
RNN, nin is the number of neurons feeding into it, and nout is the
number of neurons the result is fed to. Besides, the user embedding
matrices A and A′ are initialized by random normal that generates
variables in matrices with a normal distribution.

WordEmbedding.The pre-trainedword embeddings for Steemit-
English and Steemit-Spanish are formulated by performing GloVe
[23] on Wikipedia2 and Spanish Billion Word Corpus3, respectively.
The dimension of the pre-trained embedding is 300. The index of
OOV (Out-of-vocabulary) word is set to 0.

Path Initialization. Before MCTS based strategy updating each
user’s paths, we need to provide the initialized paths to them. Here
we test two random based methods for path initialization: randomly
selecting a set of users on the social platform as users’ friends (Ran-
dom Select) and applying random walk based strategy to generate
B paths. From Table 6, we find randomly selecting L users as the
target user’s friends can achieve slightly better results.

Table 6: Comparison of path initialization strategies.

F1 Gini C&C

Random Select 0.4769±0.46 0.6178±0.24 0.4243±0.33
Random Walk 0.4667±0.22 0.6134±0.27 0.4221±0.24

B.3 Experimental Environment
The models are implemented using Keras 2.2.4 with Tensorflow

1.31.1 as the backend, based on CUDA 10.0 using single GPU, TITAN
Xp, and are tested on Linux (CentOS release 6.9), Python 3.7 from
Anaconda 4.6.14.
2https://dumps.wikimedia.org/
3http://crscardellino.github.io/SBWCE/

10

16 32 64 128 256

h

0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

16 32 64 128 256

h

0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

16 32 64 128 256

h

0.42

0.44

0.46

0.48

C
&

C

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(a) Hidden Size h.

2 3 4 5 6 7

K

0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

2 3 4 5 6 7

K

0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

2 3 4 5 6 7

K

0.42

0.44

0.46

0.48

C
&

C

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(b) Number of kernels K in CNN.

20 50 70 100

r

0.44

0.46

0.48

0.5

F
1

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

20 50 70 100

r

0.52

0.54

0.56

0.58

G
in

i

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

20 50 70 100

r

0.42

0.44

0.46

0.48

C
&

C

SEAN-RS-F1

SEAN-SPR

SEAN-DPR

SEAN-Payout

(c) Filter size r .

Figure 6: Hyper-parameter sensitivity analysis using the samples from Steemit-English during the first 100 days.

C MORE HYPER-PARAMETER SENSITIVITY
SEAN involves a number of hyper-parameters. In this subsection,

we evaluate how different choices of other hyper-parameters affect
the performance of SEAN described in Section 3. Expect for the
parameter being tested, all other parameters are set as introduced
in Section B.1.

Hidden Size and User Embedding Size h.We first investigate
how the hidden size h affect the performance by testing h in set
{20, 50, 70, 100}. The results are shown in Figure 6(a), from which
we can observe that all four models obtain best F1 when h = 128.
Changing h does not affect too much Gini scores. The trend of
C&C is similar to the trend of F1, also getting the best result when
h = 128.

The number of kernels K and sizes of filters r . We investi-
gate the number of kernelsK and the choice of filter sizes r for CNN
in SEAN. As shown in Figure 6(b), the F1 score generally increases
as the number of kernels K with different convolutional windows
д gets larger, since more kernels are able to capture long-distance
patterns in sentences. Due to the limitation of time and memory,
we do not further enlarge the K . Meanwhile, the influence of K on
Gini is smaller than on F1. SEAN-F1-RS performs best on F1 while
performs worst on Gini. We can get the best C&C for the whole four
proposed models when K = 7. Likewise, we can observe similar

rules for the filter size r , shown in Figure 6(c): a small filter size
cannot capture more local patterns in sentences, while a too large
filter size may easily suffer from overfitting. The Gini increases with
the increasing of filter size r . The best C&C results are obtained
when r = 50.

D PREDICTION F1 OVER TIME
We show the prediction results over 368 days in Figure 7.

50 100 150 200 250 300 350

Day

0

0.2

0.4

0.6

0.8

F
1

DKN

SEAN

Figure 7: Comparison for 368 days.

11

	Abstract
	1 Introduction
	2 Overview
	3 SEAN Recommendation Model
	3.1 Socialized Document Representation
	3.2 Socialized User Representation
	3.3 Prediction and Learning
	3.4 Complexity Analysis

	4 Social Exploration
	4.1 Selecting Friends with MCTS
	4.2 Obtaining Multi-paths with Beam Search

	5 Experiments
	5.1 Dataset Description
	5.2 Evaluation Metrics
	5.3 Baselines
	5.4 Experimental Settings
	5.5 Results and Analysis
	5.6 Different Strategies in Social Exploration
	5.7 Model Ablation Study
	5.8 Hyper-parameter Sensitivity
	5.9 Scalability

	6 Related Work
	7 Conclusions
	References
	A MCTS based Beam Search Algorithm
	B Experimental Settings
	B.1 More Experimental Settings
	B.2 Initialization Details
	B.3 Experimental Environment

	C More Hyper-parameter Sensitivity
	D Prediction F1 Over Time

