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Recommender System
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Recommender System
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Recommender System

eeeee HIEFEE) T 23:26 @ 7 9 91% EM

JII¢Yl Q Royal House New Orleans, LA, United Statell\Eo]

Price ooo Open Now

The Old Coffee Pot Restaurant $$
TIE9E9E [ 585 Reviews
714 Saint Peter St, French Quarter
Cajun/Creole, Breakfast & Brunch, Seafood

Daisy Dukes Express $$
(* [ &[] 232 Reviews
123 Carondelet St, Central Business District
Cajun/Creole, Breakfast & Brunch, Southern

1. Royal House $$
(] 3 2,842 Reviews

441 Royal St, French Quarter

Seafood, Cajun/Creole, Sandwiches

2. Acme Oyster House $$
4,500 Reviews
724 lberville St, Central Business District

Fhench Quarter . .
Seafood, Cajun/Creole, Live & Raw Food

3. Oceana Grill $%
I 2,807 Reviews

B4 739 Conti St, French Quarter
Seafood, Cajun/Creole, Breakfast & Brunch

Order Pickup or Delivery Resta u ra ntS ReCO m m e n d atlo n

4. Felix's Restaurant & Oyster Bar $$
2,096 Reviews

739 lberville St, French Quarter

Seafood, Cajun/Creole

5. 801 Royal $$
-+ L3 527 Reviews

@ Q i A

Nearby Search Activity

<
o
<
©



Recommender System

e Recommender systems (RS) are everywhere.

 They are not only useful for people, but also
create huge revenues for companies.

 The most popular RS method is collaborative
filtering (CF).
— User-based CF
— [tem-based CF
— Matrix Factorization (MF)



Matrix Factorization

* Matrix Factorization is one of the most popular
methods for collaborative filtering
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Problems of MF

e Sparsity of the rating matrix
— More than 99% entries are missing.

e Cold Start

— Some users or items have no ratings.

* More importantly, MF is not applicable for
nowadays RS.

— The rating matrix is not sufficient for rich side
information.
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Photo of Royal House - New Orleans,
LA, United States

2= See all 2933
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't’s a Heterogeneous Information Network!
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R: reviews;

A Typical Network Schema of Yelp

U: users;

B: business;

Cat: category of item;

Ci: city

A

) Mention

FriendOf




Meta-path based RS

e Recommending strategies can be modeled by meta-paths

Check-in Check-in Check-in

User-based CF

< ) FriendOf <U2> Check-in @

Social Recommendation

@ Check—inb@ BelongTo>@4BelongTo @

Content-based Recommendation
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Meta-path based RS

* Similarity is the key factor.

* Embeddings of users and items are learnt from
similarities, which are used in a linear model for
rating prediction. [Yu et. al., WSDM’14]

e Ratings are predicted by weighted ensemble of
similar users’ ratings, where similarities are learnt
from different meta-paths. [Shi et. al., CIKM" 15]



Problems of meta-path

Write Rate Rate Write Check-in
R 1 '@‘ R 2

Write Mention Mention Write Check-1n
R 1 '@‘ R )

What if Ry and R, mention the same aspect
for the same business?




Problems of meta-path

Check-1n

What if Ry and R, mention the same aspect
for the same business?

Meta-path fails for such complex relations, which are
very common in nowadays recommending scenarios.



Our Work

* Meta-graph based recommendation.

e Powerful prediction model by “MF + FM”.

* Automatic selection of important meta-graphs.



Meta-graph based RS

Check-1n

A meta-graph is a directed acyclic graph (DAG) with
a single source node and a single sink (target) node.
[Huang et. al., KDD’16, Fang et. al., ICDE’16]

Write Rate Rate @ Write @ Check-in @
R4 4\ B4 )‘—‘—‘—”

Meta-path is a special case of meta-graph.




Meta-graph based RS

V/rite @ Check-in @

Compute Cp,: Cp, = Wpp - W

Compute Cp,: Cp, = Wgy - Wra

Compute Cs : Cs. = Cp, O Cp,

Compute Cp: Cpp = Wyg - Cs, - WJR - Wys



Assemble multiple meta-graphs

* |n previous work, linear ensemble methods are
used. [Yu et. al.,, WSDM’14, Shi et. al., CIKM’15]

 We argue in this work non-linear relations also
needed to be captured.

e Factorization Machine (FM) is chosen.
— Capture non-linear interactions among features.
— Good ability of prediction in recommending scenario.



Assemble multiple meta-graphs

e Factorization Machine [Rendle ICOM’ 10, TIST 12]

d d d
yw, V) = wy +2Wix[‘ + 2 2 (vi, v )xlx T
i=1

=1 j=i+1

— Linear model.

— Non-linear, second order interactions.
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“MF + FM” framework

* For each meta graph do MF:
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e Given all MF Iatent features:

— L meta-graphs

— Fdimension of MF
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* Do FM:
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Meta-graph Selection

* The original cost function of FM

m1n 2 (y

d
yw, V) = wy +2wix? +
=1

* + group lasso:

2L
(W) = ) [lwill;
=1

L meta-graphs
 |nside meta-graph: L2 norm
* Between meta-graphs: L1 norm

9w, 1))

d d
2 z (vi, vj)xfx"

i=1 j=i+1

2L
O, (V) = Z V]l
=1

nonmonotonous accelerated
proximal gradient (nmAPG)
algorithm [Li and Lin, NIPS'15]



Experiments

Yelp-200k
: Number Number Number & Avg Degrees
Relations(A-B) of A of B | of (A-B) | of A/B
User-Business 36,105 22,496 191,506 5.3/8.5
User-Review 36,105 191,506 191,506 5.3/1
User-User 17,065 17,065 140,344 8.2/8.2
Business-Category 22,496 869 67,940 3/78.2
Business-Star 22,496 9 22,496 1/2,499.6
Business-State 22,496 18 22496 1/1,249.8
Business-City 22,496 215 22,496 1/104.6
Review-Business 191,506 22,496 191,506 1/8.5
Review-Aspect 191,506 10 055,041 5/95,504.1
Amazon-200k
, Number Number Number & Avg Degrees
Relations(A-B) of A of B | of(A-B) | of A/B
User-Business 59,297 20,216 183,807 3.1/9.1
User-Review 59,297 183,807 183,807 3.1/1
Business-Category 20,216 682 87,587 4.3/128.4
Business-Brand 05,33 2,015 9,533 1/4.7
Review-Business 183,807 20,216 183,807 1/9.1
Review-Aspect 183,807 10 796,392 = 4.3/79,639.2
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Experiments

 Two more datasets are used, provided by [Shi et.
al., CIKM" 15].
— denoted as CIKM-Yelp and CIKM-Douban.

* Density

Amazon-200k  Yelp-200k CIKM-Yelp CIKM-Douban

Density 0.015% 0.024% 0.086% 0.630%

e Evaluation Metric

(Rij—R;j)

RMSE — \/Z(irj)ERteSt

|IRtest]

Smaller means better performance.



Comparison Results

Traditional

Approaches Amazon-200k  Yelp-200k ' CIKM-Yelp CIKM-Douban

2.9656 2.5141 1.5323 0.7673

RegSVD (+60.0%) (+49.9%) | (+27.7%) (+9.0%)

MR 1.3462 1.7637 1.4342 0.7524

(+11.9%) (+28.6%) (+22.8%) (+7.2%)

HeteRec 2.9368 2.3475 1.4891 0.7671

(+53.2%) (+47.0%) | (+25.6%) (+9.0%)

SemRec - 1.4603 1.1559 0.7216

HIN Based - (+13.8%) (+4.2%) (+3.2%)

Approaches FMG 1.1864 1.2588 1.1074 0.6985

 FMG(Our model) consistently beats all baselines on all datasets,
demonstrating the effectiveness of our method.

e FMG beats SemRec [Shi et. al., CIKM’ 15] on the same datasets with
the same meta-paths, demonstrating the effectiveness of the adoption
of FM.

 SemRec is better than HeteRec [Yu et. al., WSDM’2014] mainly
because it uses meta-path in style “U-*-U-B”, while HeteRec uses “U-B-
*_B”.



Selected Meta-graphs for Yelp
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Selected Meta-graphs for Amazon

User-Part Item-Part
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summary

* The first work to use meta-graph on HIN to unity
rich side information for recommender system.

* “MF+FM” is used to effectively assemble all the
meta-graphes.

* Group lasso is used to select important meta-
graphs.



