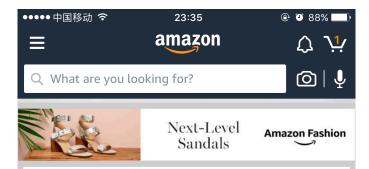
Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks

Huan Zhao

Joint work with Quanming Yao, Jianda Li, Yangqiu Song and Dik Lun Lee Department of CSE, HKUST, Hong Kong



Inspired by your shopping trends

Benchmark Bouquets White Elegance, With Vase \$37.42

Benchmark Bouquets Signature Roses and Alstroemeria, With Vase \$39.44

KaBloom Romantic Red Rose Bouquet: 12 Fresh Cut Red Roses... \$35.99

>

See more

amazon

Products Recommendation

●●●●●中国移动	4G 😤	23:17	🕑 🥘 93% 💷 🕨
Q Search		Quora	(+) Ask
📑 Feed		Bookmarks	🕑 New Questions

Answer · Artificial Intelligence

So many people are learning machine learning. What should I do to stand out?

Abhishek Patnia, Applied Scientist at Amazon.com

Updated Sat · Upvoted by Jordan Frank, <u>Datamaker at</u> Facebook and Siraj Memon, <u>MS Computer Science</u>, University of Maryland, Baltimore Coun...

Yes, it is true that many people are trying to learn Machine Learning. However, most people abandon their efforts really fast because: * Writing c Read More

Upvote Downvote Share

...

...

You

Question asked · Artificial Intelligence

How do people learn to build AI?

How do people that work in Al labs learn to build one? Where can i learn it?

Last followed 3m ago · 2 Answers

Read

Answer Pass Follow 57

Answer

Notifications

Questions and Answers Recommendation

●●●●● 中国移	多动 奈 23:26 	9 1% 🔛
Filter	Q Royal House New Orleans, LA, United Sta	ate Map
Price ••	• Open Now	
	Ad The Old Coffee Pot Restaurant	\$\$
	Ad Daisy Dukes Express 2 2 2 2 Reviews 123 Carondelet St, Central Business District Cajun/Creole, Breakfast & Brunch, Southern	\$\$
	1. Royal House ★★★★★★ 2,842 Reviews 441 Royal St, French Quarter Seafood, Cajun/Creole, Sandwiches	\$\$
Acme orster house wat the name name Strenct: Quarter	2. Acme Oyster House ★★★★★ 4,500 Reviews 724 Iberville St, Central Business District Seafood, Cajun/Creole, Live & Raw Food	\$\$
	3. Oceana Grill ★ ★ ★ ★ ★ 2,807 Reviews 739 Conti St, French Quarter Seafood, Cajun/Creole, Breakfast & Brunch	\$\$
	Order Pickup or Delivery	
Ris	 4. Felix's Restaurant & Oyster Bar ★ ★ ★ 2,096 Reviews 739 Iberville St, French Quarter Seafood, Cajun/Creole 	\$\$
	5. 801 Royal ★ ★ ★ ★ ★ 527 Reviews	\$\$
Nearby	Search	More

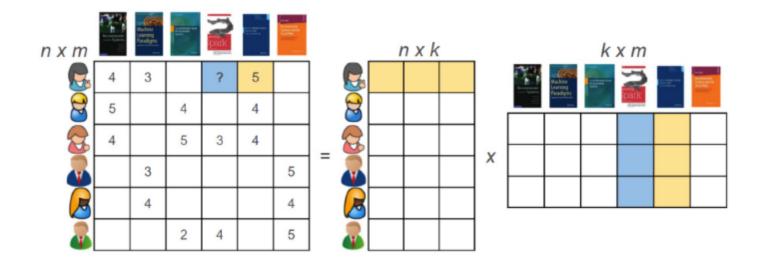
Restaurants Recommendation

- Recommender systems (RS) are everywhere.
- They are not only useful for people, but also create huge revenues for companies.

- The most popular RS method is collaborative filtering (CF).
 - User-based CF
 - Item-based CF
 - Matrix Factorization (MF)

Matrix Factorization

• Matrix Factorization is one of the most popular methods for collaborative filtering



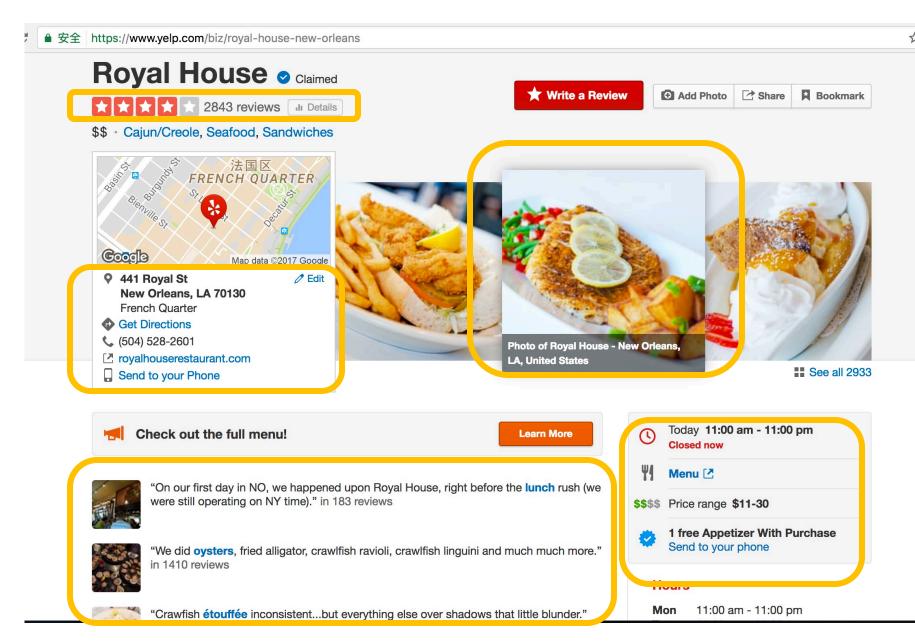
$$\min_{U,B} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} \left(R_{ij} - u_i b_j \right)^2 + \frac{\lambda_1}{2} \left| |U| \right|_F^2 + \frac{\lambda_2}{2} \left| |B| \right|_F^2$$

https://buildingrecommenders.wordpress.com/2015/11/18/overview-of-recommender-algorithms-part-2/

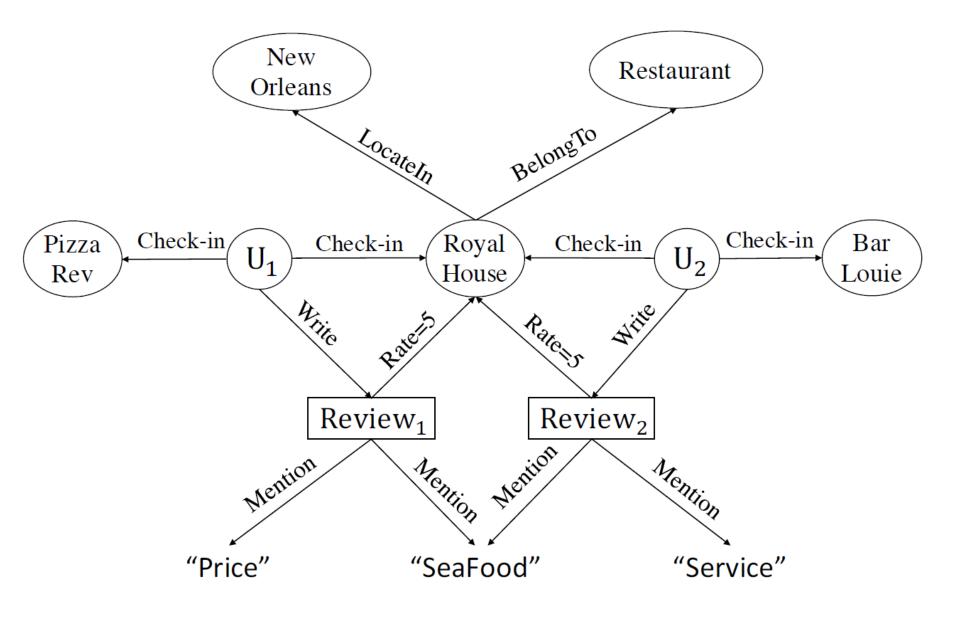
Problems of MF

- Sparsity of the rating matrix
 - More than 99% entries are missing.
- Cold Start
 - Some users or items have no ratings.
- More importantly, MF is not applicable for nowadays RS.
 - The rating matrix is not sufficient for rich side information.

Example

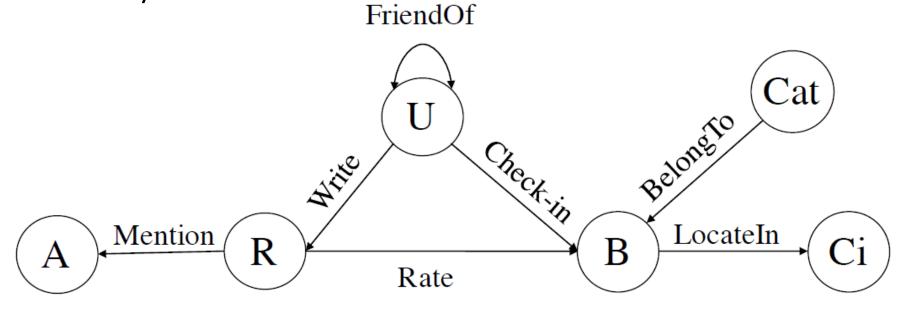


It's a Heterogeneous Information Network!



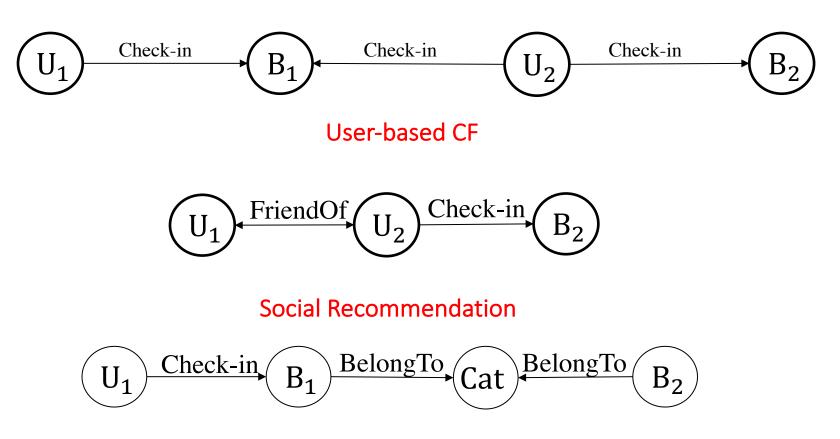
A Typical Network Schema of Yelp

- R: reviews;
- U: users;
- B: business;
- Cat: category of item;
- Ci: city



Meta-path based RS

• Recommending strategies can be modeled by meta-paths



Content-based Recommendation

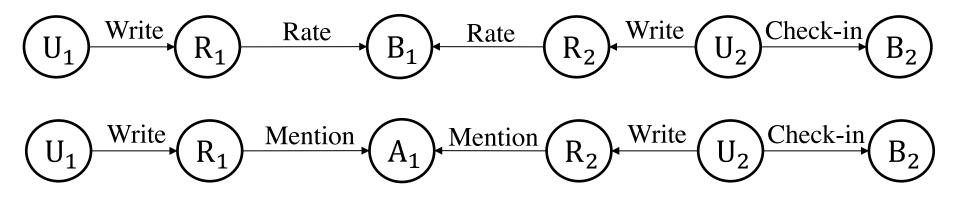
Meta-path based RS

• Similarity is the key factor.

• Embeddings of users and items are learnt from similarities, which are used in a linear model for rating prediction. [Yu et. al., WSDM'14]

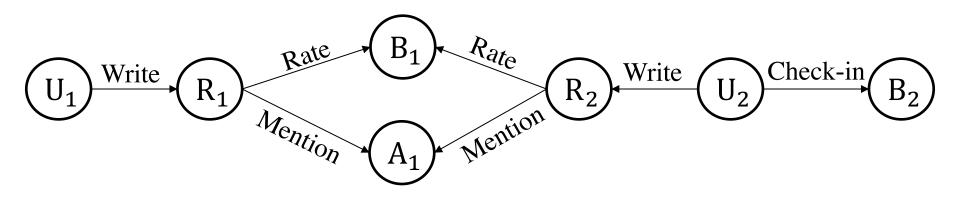
• Ratings are predicted by weighted ensemble of similar users' ratings, where similarities are learnt from different meta-paths. [Shi et. al., CIKM' 15]

Problems of meta-path



What if R_1 and R_2 mention the same aspect for the same business?

Problems of meta-path



What if R_1 and R_2 mention the same aspect for the same business?

Meta-path fails for such complex relations, which are very common in nowadays recommending scenarios.

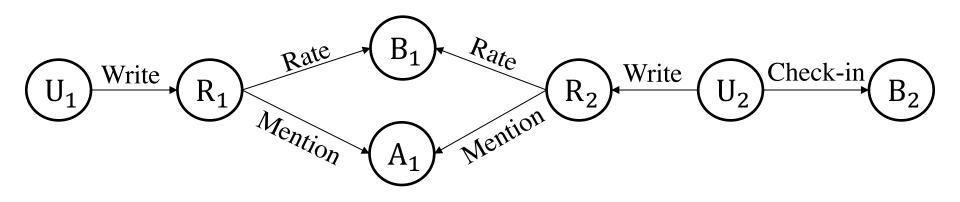
Our Work

• Meta-graph based recommendation.

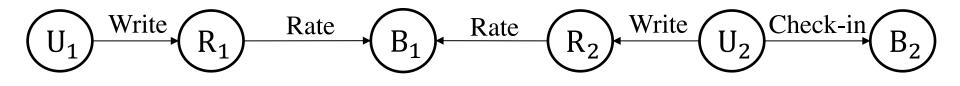
• Powerful prediction model by "MF + FM".

• Automatic selection of important meta-graphs.

Meta-graph based RS

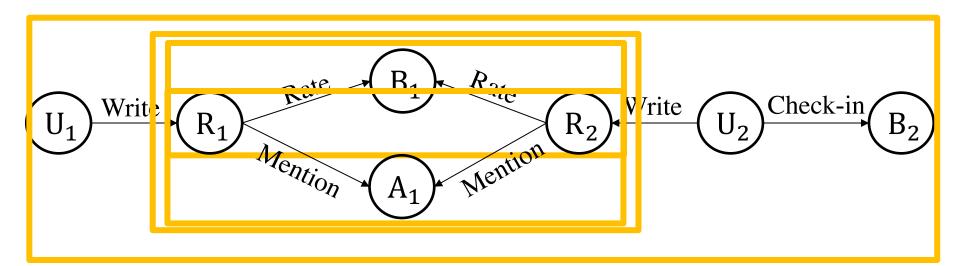


A meta-graph is a directed acyclic graph (DAG) with a single source node and a single sink (target) node. [Huang et. al., KDD'16, Fang et. al., ICDE'16]



Meta-path is a special case of meta-graph.

Meta-graph based RS



Compute C_{P_1} : $C_{P_1} = W_{RB} \cdot W_{RB}^T$ Compute C_{P_2} : $C_{P_2} = W_{RA} \cdot W_{RA}^T$ Compute C_{S_r} : $C_{S_r} = C_{P_1} \odot C_{P_2}$ Compute C_M : $C_M = W_{UR} \cdot C_{S_r} \cdot W_{UR}^T \cdot W_{UB}$

Assemble multiple meta-graphs

- In previous work, linear ensemble methods are used. [Yu et. al., WSDM'14, Shi et. al., CIKM'15]
- We argue in this work non-linear relations also needed to be captured.

- Factorization Machine (FM) is chosen.
 - Capture non-linear interactions among features.
 - Good ability of prediction in recommending scenario.

Assemble multiple meta-graphs

• Factorization Machine [Rendle ICDM'10, TIST'12]

$$\hat{y}(w,V) = w_0 + \sum_{i=1}^d w_i x_i^n + \sum_{i=1}^d \sum_{j=i+1}^d \langle v_i, v_j \rangle x_i^n x_j^n$$

- Linear model.
- Non-linear, second order interactions.

"MF + FM" framework

• For each meta-graph, do MF:

$$\min_{U,B} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} \left(R_{ij} - u_i b_j \right)^2 + \frac{\lambda_1}{2} \left| |U| \right|_F^2 + \frac{\lambda_2}{2} \left| |B| \right|_F^2$$

- Given all MF latent features:
 - L meta-graphs
 - F dimension of MF

$$\mathbf{x}^{n} = \underbrace{\mathbf{u}_{i}^{(1)}, ..., \mathbf{u}_{i}^{(l)}, ..., \mathbf{u}_{i}^{(L)}}_{L \times F} \underbrace{\mathbf{b}_{j}^{(1)}, ..., \mathbf{b}_{j}^{(l)}, ..., \mathbf{b}_{j}^{(L)}}_{L \times F}$$

$$\hat{y}(w,V) = w_0 + \sum_{i=1}^d w_i x_i^n + \sum_{i=1}^d \sum_{j=i+1}^d \langle v_i, v_j \rangle x_i^n x_j^n$$

Meta-graph Selection

• The original cost function of FM $\min_{w,V} \sum_{n=1}^{N} (y^n - \hat{y}^n(w,V))^2$

$$\hat{y}(w,V) = w_0 + \sum_{i=1}^d w_i x_i^n + \sum_{i=1}^d \sum_{j=i+1}^d \langle v_i, v_j \rangle x_i^n x_j^n$$

• + group lasso:

$$\Phi_w(w) = \sum_{l=1}^{2L} ||w_l||_2$$

$$\Phi_V(V) = \sum_{l=1}^{2L} ||V||_2$$

L meta-graphs

- In side meta-graph: L2 norm
- Between meta-graphs: L1 norm

nonmonotonous accelerated proximal gradient (nmAPG) algorithm [Li and Lin, NIPS'15]

Experiments

Yelp-200k						
Polations(A B)	Number	Number	Number	Avg Degrees		
Relations(A-B)	of A	of B	of (A-B)	of A/B		
User-Business	36,105	22,496	191,506	5.3/8.5		
User-Review	36,105	191,506	191,506	5.3/1		
User-User	17,065	17,065	140,344	8.2/8.2		
Business-Category	22,496	869	67,940	3/78.2		
Business-Star	22,496	9	22,496	1/2,499.6		
Business-State	22,496	18	22496	1/1,249.8		
Business-City	22,496	215	22,496	1/104.6		
Review-Business	191,506	22,496	191,506	1/8.5		
Review-Aspect	191,506	10	955,041	5/95,504.1		
Relations(A-B)	Number	Number	Number	Avg Degrees		
Relations(A-D)	of A	of B	of (A-B)	of A/B		
User-Business	59,297	20,216	183,807	3.1/9.1		
User-Review	59,297	183,807	183,807	3.1/1		
Business-Category	20,216	682	87,587	4.3/128.4		
Business-Brand	95,33	2,015	9,533	1/4.7		
Review-Business	183,807	20,216	183,807	1/9.1		
Review-Aspect	183,807	10	796,392	4.3/79,639.2		

Experiments

- Two more datasets are used, provided by [Shi et. al., CIKM' 15].
 - denoted as CIKM-Yelp and CIKM-Douban.
- Density

	Amazon-200k	Yelp-200k	CIKM-Yelp	CIKM-Douban
Density	0.015%	0.024%	0.086%	0.630%

• Evaluation Metric

$$RMSE = \sqrt{\frac{\sum_{(i,j) \in R_{test}} (R_{ij} - \hat{R}_{ij})}{|R_{test}|}}$$

Smaller means better performance.

Comparison Results

Traditional Approaches		Amazon-200k	Yelp-200k	CIKM-Yelp	CIKM-Douban
	RegSVD	2.9656 (+60.0%)	2.5141 (+49.9%)	1.5323 (+27.7%)	0.7673 (+9.0%)
	FMR	1.3462 (+11.9%)	1.7637 (+28.6%)	1.4342 (+22.8%)	0.7524 (+7.2%)
	HeteRec	2.5368 (+53.2%)	2.3475 (+47.0%)	1.4891 (+25.6%)	0.7671 (+9.0%)
HIN Based	SemRec	- -	1.4603 (+13.8%)	1.1559 (+4.2%)	0.7216 (+3.2%)
Approaches	FMG	1.1864	1.2588	1.1074	0.6985

• FMG(Our model) consistently beats all baselines on all datasets, demonstrating the effectiveness of our method.

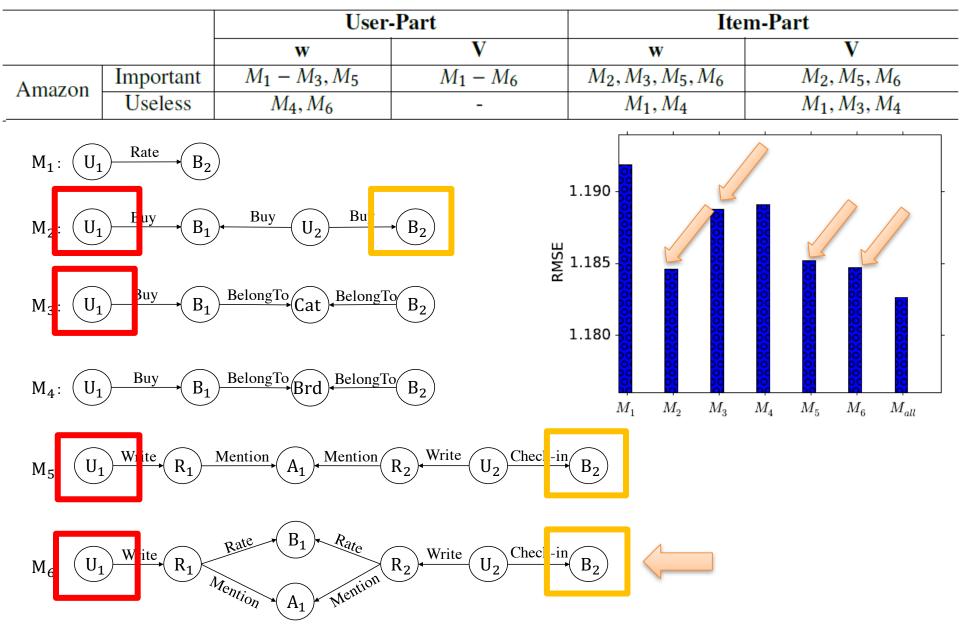
- FMG beats SemRec [Shi et. al., CIKM' 15] on the same datasets with the same meta-paths, demonstrating the effectiveness of the adoption of FM.
- SemRec is better than HeteRec [Yu et. al., WSDM'2014] mainly because it uses meta-path in style "U-*-U-B", while HeteRec uses "U-B-*-B".

Selected Meta-graphs for Yelp

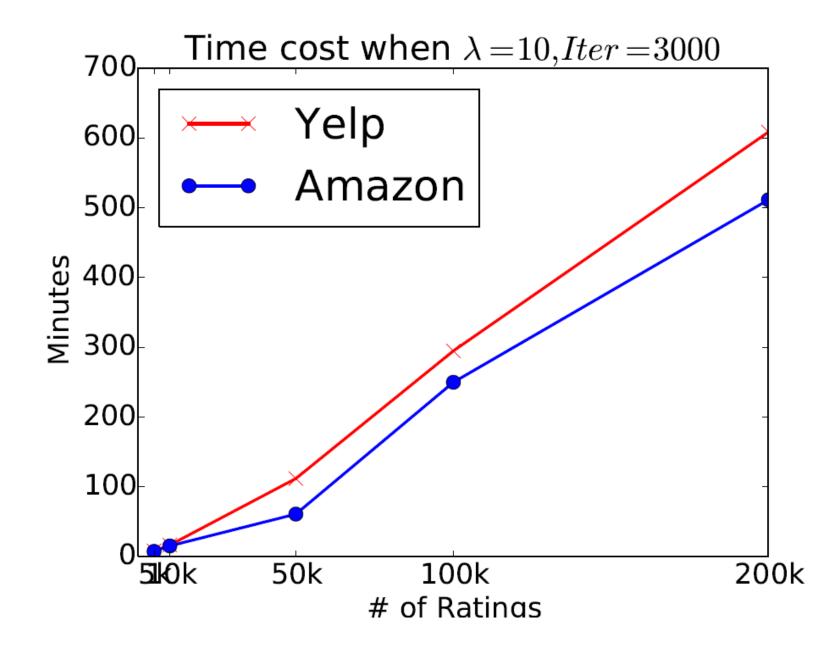
		User	-Part	Item-Part		
		W	V	W	V	
Yelp	Important	$M_1 - M_4, M_6, M_8$	$M_1 - M_3, M_5, M_8$	$M_1 - M_5, M_8, M_9$	M_{3}, M_{8}	
	Useless	M_5, M_7, M_9	M_4, M_6, M_7, M_9	M_{6}, M_{7}	$M_1, M_2, M_4 - M_7, M_9$	



Selected Meta-graphs for Amazon



Scalability of Algorithm



Summary

• The first work to use meta-graph on HIN to unify rich side information for recommender system.

• "MF+FM" is used to effectively assemble all the meta-graphs.

• Group lasso is used to select important metagraphs.