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Abstract—Matrix Factorization (MF) is a very popular method
for recommendation systems. It assumes that the underneath
rating matrix is low-rank. However, this assumption can be
too restrictive to capture complex relationships and interactions
among users and items. Recently, Local LOw-Rank Matrix
Approximation (LLORMA) has been shown to be very successful
in addressing this issue. It just assumes the rating matrix is
composed of a number of low-rank submatrices constructed
from subsets of similar users and items. Although LLORMA
outperforms MF, how to construct such submatrices remains
a big problem. Motivated by the availability of rich social
connections in today’s recommendation systems, we propose a
novel framework, i.e., Social LOcal low-rank Matrix Approx-
imation (SLOMA), to address this problem. To the best of
our knowledge, SLOMA is the first work to incorporate social
connections into the local low-rank framework. Furthermore, we
enhance SLOMA by applying social regularization to submatrices
factorization, denoted as SLOMA++. Therefore, the proposed
model can benefit from both social recommendation and the local
low-rank assumption. Experimental results from two real-world
datasets, Yelp and Douban, demonstrate the superiority of the
proposed models over LLORMA and MF. 1

Index Terms—Recommendation system, Collaborative Filter-
ing, Matrix factorization, Local low-rank, Social network

I. INTRODUCTION

Recommendation System (RS) has become an indispensable
tool in the big data era. It tackles information overload by
helping users to get interesting items based on their previous
behaviors. Collaborative Filtering (CF), a state-of-the-art RS
technique, tries to predict users’ ratings (or preferences) on
unseen items based on similar users or items. Among various
CF-based methods, Matrix Factorization (MF) is most popular
due to its good performance and scalability [1], [2], [3], [4].
MF is based on the assumption that users’ preferences to items
are controlled by a small number of latent factors. Thus, the
large user-item rating matrix can be decomposed into two
smaller matrices, representing user-specific and item-specific
latent factors, respectively. In other words, the rating matrix
is of low-rank.

Despite the success of MF in RS, the assumption that
the rating matrix is low-rank (termed global low-rank) is
problematic because the rating matrix in a real-world scenario
is very large and composed of diverse rating behaviors, making
the low-rank assumption of the rating matrix improper. Lee et
al. [5] proposed a novel framework called Local LOw-Rank

1Quanming Yao is the Corresponding author.

Matrix Approximation (LLORMA) to alleviate the global low-
rank problem. Based on the observation that there tend to
be groups of users who are interested in small sets of items,
LLORMA takes the view that the rating matrix is composed
of a number of low-rank submatrices (termed local low-rank),
which is illustrated in the right part of Figure 1. Extensive
experiments have demonstrated the effectiveness of LLORMA
in recommendation systems [5], [6], [7], [8]. Besides RS, sub-
sequent works have been performed in different domains based
on the local low-rank assumption, e.g., image processing [9],
[10], multi-label classifications [11], document analysis [12],
demonstrating the efficacy of this framework.

In the local low-rank approach, the construction of the
submatrices is a fundamental problem. Lee et al. [5] proposed
to firstly choose some random anchor points, i.e., user-item
pairs, from the rating matrix. Then, for each anchor point,
one submatrix is constructed by selecting the remaining points
that are close to the anchor point based on some distance
metrics. However, this method leads to several problems.
Firstly, since anchor points are randomly selected, it is hard
to explain the meaning of the obtained submatrices, and thus
the recommendation results are also unexplainable. Secondly,
since the submatrices are constructed around the anchor points
using a distance threshold, they are very sensitive to the
distance threshold. Thus, finding a good distance threshold
value is a challenging task. Finally, the computation and space
costs are both high, because we need to compute and store the
pair-wise similarities of users and items in all submatrices.

To overcome the weaknesses of LLORMA, we propose
a novel framework, Social LOcal low-rank Matrix Approxi-
mation (SLOMA), which incorporates the social connections
among users into the local low-rank framework. While so-
cial connections have been exploited effectively in MF-based
RSs [13], [14], [15], [16], [17], to the best of our knowledge,
SLOMA is the first work to utilize social connections under the
local low-rank framework. As in most social network research,
SLOMA assumes that the social graph embeds a number of
social groups, within which users have similar preferences
to and influences on each other. The basic idea of SLOMA
is illustrated in the left part of Figure 1. There are three
social groups underlying the social network,2 based on which
we can construct three submatrices out of the rating matrix

2Note that the groups can overlap in reality, here we put them separately
for simplicity.



Fig. 1. An illustration of SLOMA. Left-hand side: an example social network, where underlying social groups are circled. Right-hand side: the core
idea of LLORMA, that is, the rating matrix is composed of a number of submatrices which are low-rank. SLOMA enhances LLORMA with the social
groups underlying the social network to construct meaningful submatrices. Therefore, SLOMA can enjoy the advantages of both social recommendation and
LLORMA, leading to better recommendation performance.

satisfying the low-rank assumption. The social connections
help SLOMA in solving the important submatrix construction
problem. Specifically, instead of randomly selecting anchor
points as in LLORMA, SLOMA can select influential users,
termed connectors, and pick the connectors’ friends within a
certain distance in the social graph (i.e., within several hops)
to construct the submatrices, which are meaningful because
they can be treated as social groups. See the example in
Figure 1. Thus, SLOMA solves all the three problems faced
by LLORMA, that is, it selects meaningful anchors and build
meaningful submatrices, its distance measure is intuitive, and
there is no need to keep the pairwise similarities of users and
items for each submatrix, which avoids high computation and
space costs.

In summary, the contributions of our work are as follows.

• To the best of our knowledge, SLOMA is the first work
that incorporates social connections into the local low-
rank framework, which can enjoy the advantages from
both sides, i.e., social recommendation and local low-
rank framework.

• SLOMA addresses the submatrice construction problem
in LLORMA by exploiting social connections. These
submatrices have better interpretability (explained by
social homophily theory) and lead to superior prediction
accuracy over LLORMA.

• In addition to SLOMA, we also propose SLOMA++ that
incorporates social regularization techniques into each
local model to further improve the performance.

• We conduct extensive experiments on two real-world
datasets to show the effectiveness of our proposed
methods. We not only demonstrate the effectiveness of
SLOMA and SLOMA++, but also give insights into so-
cial recommendation under the local low-rank framework.

The rest of the paper is organized as follows. MF, LLORMA

and social recommendation are introduced in Section II. We
then elaborate our SLOMA model in Section III, and the
experiments as well as the analysis in Section IV and V,
respectively. Finally, we conclude our work in Section VI.

II. BACKGROUND

A. MF and LLORMA

MF has been one of the most popular approaches for
rating prediction in recommendation systems. Based on the
assumption that users’ preferences to items are governed by a
small number of latent factors, the rating matrix O ∈ Rm×n
can be approximated by the product of l-rank matrices,

R ≈ UV>, (1)

where U ∈ Rm×l and V ∈ Rn×l with l� min(m,n), repre-
senting, respectively, the latent features of users’ preferences
and items. The approximating process can be completed by
solving the following optimization problem:

min
U,V

1

2

∑
(i,j)∈Ω

(Oij − uiv
>
j )2, (2)

where ui and vj are the ith and jth rows of U and V,
representing the latent feature vectors of user ui and item
vj , respectively. || · ||F denotes the Frobenius norm, and Ω
is the index set of the observations, and Oij is the observed
rating of user ui to item vj . In order to avoid overfitting,
two regularization terms, λ

2

(
||U||2F + ||V||2F

)
, are added to

Equation (2). In the literature, this method is also termed
Regularized SVD (RegSVD) [1].

Instead of assuming the rating matrix to be low-rank, Lee
et al. proposed a novel framework LLORMA that assumes
the rating matrix is local low-rank [5], i.e., it is composed
of a number of submatrices which are of low-rank. After
obtaining the submatrices, MF is applied to each submatrix



independently, and then a weighted ensemble scheme is de-
signed to approximate the rating matrix. The key component
of LLORMA is the construction of submatrices, which is
depicted in Algorithm 1.

Algorithm 1 Submatrice Construction (LLORMA)
Input: Observed index set Ω, number of submatrices q,

distance threshold d1, d2;
1: for t = 1, 2, ..., q do
2: Select a point (it, jt) randomly from Ω;
3: Obtain a subset of users U t =

{
uk : d(uit , uk) ≤ d1

}
;

4: Obtain a subset of items V t =
{
vk : d(vjt , vk) ≤ d2

}
;

5: Obtain Mt; // The tth submatrix based on U t and V t.
6: end for
7: return

{
Mt
}q
t=1

In Line 2, a point (it, jt), termed anchor point, is chosen
randomly.3 d(·) is a distance function for any two users
or items in the rating matrix. d1 and d2 are two distance
thresholds for selecting users or items according to Line 3 and
4. A submatrix is then constructed from the selected users and
items that are within the distance threshold from the anchor
point. In LLORMA, the distance d is based on the cosine
similarity between any two latent features of users or items.
It is reported that such measurement gives the best predicting
performance [5]. Specifically, the arc-cosine between users uit
and uk is

d(it, k) = arccos

(
uituk

||uit || · ||uk||

)
. (3)

Besides, the similarity between items are also computed based
on arc-cosine distance at Equation (3).

After obtaining q submatrices, MF is applied to each subma-
trice independently, leading to q groups of user-specific and
item-specific latent features. Finally, the rating matrix R is
approximated by the weighted ensemble of product of these q
groups of user-specific and item-specific latent feature vectors
as follows

Rij =

q∑
t=1

wtij∑q
s=1 w

s
ij

[
uti(v

t
j)
>], (4)

where wtij is the weight computed based on the distance
between a point (ui, vj) and an anchor point (uit , vjt) in every
submatrix. uti and vtj represent the latent feature vectors of ui
and vj , respectively, from the tth submatrix. It means that the
prediction of a point (ui, vj) in the rating matrix is a weighted
average of the predicted ratings from all submatrices where ui
and vj both occur. Experiments on real-world datasets show
that LLORMA improves prediction accuracy compared to
RegSVD. Besides recommendation [5], [6], [7], [8], the local
low-rank assumption has been demonstrated to be effective
in many other domains, including image processing [9], [10],
multi-label classifications [11], and document analysis [12].

3There are more complex methods for picking up anchor points, but random
choosing gives the best predicting performance as reported in [5]. Thus, we
focus on random choosing here.

B. Social Recommendation in MF

Social recommendation has become more and more popular
with the proliferation of online social networks such as Face-
book, Twitter and Yelp. Previous works have been performed
to incorporate social connections into the MF framework [13],
[14], [15], [17], [18]. Most of these works are based on
the social homophily theory [19] that people with similar
preferences tend to be connected as friends. Thus, the latent
feature vectors of friends should be closer after factorizing
the rating matrix. One typical method is to add the social
regularization term to the objective function (2), which is
defined in the following:

β

2

m∑
i=1

∑
j∈F(i)

Sij ||ui − uj ||22, (5)

where β > 0 is the weight of social regularization term, F(i)
is the set of ui’s friends, and Sij is the similarity between ui
and uf . The more similar two users are, the closer their latent
feature vectors.

We note that there are no previous work on social recom-
mendation under the local low-rank framework. The major dif-
ference between our SLOMA and LLORMA is that LLORMA
uses random anchor points to construct submatrices, while
we use social connections. Thus, we can obtain meaningful
submatrices and better prediction ability because each sub-
matrix can represent the behavior of a socially connected
user group. Moreover, we enhance SLOMA to SLOMA++
by incorporating social regularization into every local model,
and demonstrate with experiments that recommendation per-
formance can be further improved.

III. SOCIAL LOCAL MATRIX APPROXIMATION

In this section, we first describe the main problem facing
submatrix construction in LLORMA, which also motivates our
work. Then, we elaborate the proposed SLOMA framework.

A. Motivation

Despite the success of LLORMA, the main weakness of
LLORMA is its submatrix construction method (Algorithm 1).
We identify three problems below.

First, the anchor points are chosen randomly, which do not
have any reasonable justification and cannot be interpreted.
Second, the constructed submatrices are neither stable nor
meaningful. Specifically, the cosine similarity in Equation (3)
is used in LLROMA, which is computed in Lines 3 and
4 of Algorithm 1. From Lemma III.1 (proof can be found
in Appendix A), we can see that different pairs of (U, V)
may be obtained from solving the optimization problem in
Equation (2). However, the cosine similarity is not robust to
the transformation in Lemma III.1. Using the same anchor
point with the pair (U, V) or (Û, V̂), different submatrices
can be constructed. As a result, the constructed submatrices
are not consistent and then become meaningless. Third, to
predict a missing rating in the original big rating matrix, a
weighted average scheme is used to combine the ratings in the



submatrices according to Equation (4). This suffers from the
same problem facing submatrix construction, as the weights
are also computed based on cosine similarity.

Lemma III.1. Given any matrices U and V which are an
optimal solution to (2), then Û = UQ and V̂ = VQ−1 are
also an optimal solution, if matrix Q is invertible.

Motivated by these problems, we propose a novel frame-
work integrating social connections with the local low-rank
framework. Based on the social homophily theory [19] that
people with similar preferences tend to be connected as
friends, we use the social connections among users as an
explicit indicator of similarity between users’ preferences in
constructing the submatrices. Since each submatrix contains
socially connected users with similar preferences, it satisfies
the low-rank property. Moreover, we argue and demonstrate
with experiments that the submatrices obtained in our model
are better than those in LLORMA in terms of overall predic-
tion ability. The core idea of our proposed model is illustrated
in Figure 1.

B. SLOMA

In this section, we give a formal and mathematical elabo-
ration of SLOMA and design the optimization approaches.

We first introduce the notations in this work. Let U =
{u1, u2, ..., um} and V = {v1, v2, ..., vn} be the sets of users
and items, respectively. Let G = (U , E) represents a social
network graph, where the vertex set U = {u1, u2, ..., um}
represents the users and the edge set E = {e1, e2, ..., ep}
represents the social connections among all users. The weight
of every edge of G is set to 1, representing the existence
of friendship between two users.4 Then, for any two users
ui, uj , d(ui, uj) is the distance between ui and uj , which
can be computed from the social graph. In this paper, we
propose a novel framework to integrate social recommendation
with the local low-rank assumption. The key challenge is
how to construct submatrices from the rating matrix. We
develop several approaches, including heuristic and systematic
approaches.

After constructing the submatrices, we apply MF to them
and obtain a number of user-specific and item-specific latent
features in different submatrices. It is obvious that these
submatrices have overlaps, i.e., a user and an item can occur in
more than one submatrices, which aligns with our intuition that
users tend to participate in multiple groups in social networks.

Overall, SLOMA consists of the following steps:
• Identify q social groups from the social graph G, and then

construct q submatrices from the rating matrix O based
on those groups.

• Apply MF to all the submatrices, i.e., {Mt}qt=1, inde-
pendently, and obtain q groups of user-specific and item-
specific latent features.

• Predict the missing ratings in R using the ensemble of
predictions from all submatrices.

4We assume that the social graph is undirected and unweighted.

C. Construction of Submatrices

In SLOMA, we assume that there are groups of users un-
derlying the social network, whose preferences are similar due
to the fact that they are socially connected. To identify these
groups, we develop both heuristic and systematic approaches
in this work.
Heuristic Approaches. For the heuristic approaches, we build
the social groups based on the fact that users’ influences to
each other can propagate through the networks. We observe
that users in a social group can affect each other and the
amount of influence can vary. Intuitively, those with more
friends tend to have larger influence than others. Based on
this, we construct the submatrices by first selecting a number
of influential users, i.e., the connectors, and their friends within
a fixed number of hops, e.g., three, in the social network. Then,
for each group of users, we select the items they rate and then
the submatrix is constructed from this user-item group. Note
that there are several methods for selecting the connectors with
different overall performance. We discuss this in Section III-E
and analyze the experimental results in Section V-D. After
selecting q connectors, construction of the submatrix is shown
in Algorithm 2. The shortest path in Line 3 can be obtained
by algorithms such as Dijkstra’s algorithm.

Algorithm 2 Heuristic Submatrix Construction.
Input: Observed index set Ω, social graph G = (U , E),

number of submatrices q, distance threshold d;
1: Obtain q users as connectors from U ;
2: for t = 1, 2, . . . , q do
3: Obtain D(uit , uk): the shortest distance between uit

and all the other users uks in G;
4: Obtain a subset of users U t =

{
uk : D(uit , uk) ≤ d

}
;

5: Obtain a subset of items V t =
{
vj : (i, j) ∈ Ω,∀ui ∈

U t
}

; // All items rated by users in U t.
6: Obtain Mt; // The tth submatrix based on U t and V t

7: end for
8: return

{
Mt
}q
t=1

Systematic Approaches. The systematic approaches are based
on methods for overlapping community detection, which have
been intensively investigated in recent years. We can see that
social groups are equivalent to communities in social networks.
In the literature, a community is a group of people who
have more interactions within the group than those outside
it [20], and hence users in the same community have more
characteristics in common than with users outside of it. This
leads to the low-rank property of the submatrix constructed
from one community. Naturally, communities can overlap with
each other, and many works have been done for detecting such
communities, e.g., line graph partitioning [21], clique percola-
tion [22], eigenvector methods [23], egonet analysis [24], [25]
and low-rank models [26]. In this work, we adopt BIGCLAM
[26], which can scale to large datasets and has good empirical
performance. The process is shown in Algorithm 3. We can see



that the only difference from Algorithm 2 is how we construct
the social groups (Line 1).

Algorithm 3 Systematic Submatrix Construction
Input: Observed index set Ω, social graph G = (U , E),

number of submatrices q;
1: Apply BIGCLAM [26] to G to obtain the set C of q

communities;
2: for t = 1, 2, . . . , q do
3: Obtain a subset of users U t ∈ C; // U t is the tth

community.
4: Obtain a subset of items V t=

{
vj : (i, j)∈Ω,∀ui∈U t

}
;

// All items rated by users in U t.
5: Obtain Mt; // The tth submatrix based on U t and V t

6: end for
7: return

{
Mt
}q
t=1

Note that different methods lead to different numbers of
users in the submatrices, i.e., they may cover different numbers
of users in the social graph, which will influence the overall
prediction ability of SLOMA. In Sections V-D and V-E, we
give detailed comparisons and analysis for these different
submatrix construction methods, and show that the heuristic
approaches outperform the systematic ones.

D. Matrix Factorization in Social Local Models

After obtaining q submatrices, we apply MF to each sub-
matrix independently according to Equation (2). Note that
in LLORMA, each submatrix corresponds to a local model.
Similarly, each submatrix in SLOMA corresponds to a social
local model. In the following sections, we use the terms “local
model” and “submatrix” interchangeably. By training each
social local model, we can obtain q groups of user latent
feature matrices, U1, . . . ,Uq , and item latent feature matrices,
V1, . . . ,Vq . Then, the overall rating of user ui given to item
vj is predicted according to the following ensemble method:

Rij =
1

q

q∑
t=1

uti(v
t
j)
>, (6)

where uti and vtj , respectively, are the user-specific and item-
specific latent feature vectors in the tth submatrix where they
occur, and q is the number of submatrices where user ui and
item vj both occur. Equation (6) means that the rating of ui
given to vj is predicted by the average of predicted ratings
that ui gives to vj in all submatrices.

E. Different Methods to Select Connectors

The construction of social groups in SLOMA is similar
to overlapping community detection using seed set expan-
sion [27], [28]. There tend to be a small number of so-
called long-tail users, i.e., those with few friends, which are
difficult to be selected into any of the social groups, leading
to incomplete coverage of SLOMA. We define two kinds of
coverage in this work: i) User Coverage is the percentage
of unique users in U selected by all of the social groups;

ii) Rating Coverage is the percentage of unique ratings in Ω
selected by all of the submatrices.

Rating coverage is dependent on user coverage because
when constructing each submatrix, we usually select all of the
items rated by that group of users. Therefore, in this paper, we
use coverage to represent any of these two concepts depending
on the context. In the local low-rank framework, the coverage
of the submatrices is very important for the overall prediction
performance. In LLORMA, the random selection of anchor
points and choice of distance threshold are used to control the
rating coverage. Due to the randomness of the anchor points,
the coverage of all submatrices will be 1 when the number of
anchor points reaches a large enough value. Further, the larger
the threshold is, the larger the coverage of each submatrix.

In SLOMA, we select seeds, i.e., connectors, in the social
graph and propagate from each seed along different number
of hops to construct the social groups. For long-tail users who
cannot be covered, we predict their ratings with the mean
of all the observed ratings, which is the same approach as
in [5]. In Section V-A, we can see that the performance of
SLOMA is still better than that of LLORMA and RegSVD,
demonstrating the superiority of the submatrix construction
method in SLOMA. However, it is still very important to cover
as many points in the rating matrix as possible. Thus, we
try several connector selection methods, which are described
below:
• Hub: Select a set of users with the largest number of

neighbors.
• Random: Randomly select a set of users.
• Random-Hub: It is an integration of the above two

methods, that is, we first select a larger number of hub
users, e.g., 1000, and then randomly select a smaller
number of the hub users, e.g., 50.

• Greedy: Each time we select a connector, we select from
those not yet covered by connectors that are already
selected.

After obtaining the set of connectors, we construct one
submatrix around each connector user as shown in Lines 4 and
5 of Algorithm 2. In Section V-D, we compare the performance
of these methods as well as the community-based submatrix
construction method. We can see that despite the existence of
a small number of uncovered users, Hub and Greedy obtain
the best performance comparing to the other methods.

F. SLOMA++

In addition to constructing the submatices in SLOMA,
social connections can be used to enhance each local model
by applying social regularization to the factorization of each
submatrix. Social regularization adds constraints that users
with direct social connections should be closer in the latent
space, which is introduced in Equation (5).

For each local model, the social regularization term is
defined as:

β

2

m∑
i=1

∑
j∈F(i)

Stij ||uti − utj ||22, (7)



where St ∈ R|Ut|×|Ut| is the similarity matrix with Stij
representing the similarity between users ui and uj in the tth
submatrix, and |U t| is the number of users in the tth submatrix.
Note that we apply Equation (7) when each submatrix is
factorized. We term this model SLOMA++.

To calculate the similarities between two users ui and uj , we
utilize the popular Person Correlation Coefficient (PCC) [29]:

Stij=

∑
f∈T (i,j)

(Mt
if − M̄ t

i )(M
t
jf − M̄ t

j )√ ∑
f∈T (i,j)

(Mt
if − M̄ t

i )
2
√ ∑
f∈T (i,j)

(Mt
jf − M̄ t

j )
2
,

where M̄ t
i represents the mean value of all of the ratings of

user ui in the tth submatrix Mt, and It(i) represents the set
of items rated by user ui in the tth submatrix Mt. T (i, j) =
It(i) ∩ It(j), representing the set of common items rated by
ui and uj in the tth submatrix. Note that when constructing
the submatrix for a group of users, we take all of the group’s
ratings in O. Thus, for the same user pair ui and uj , T (i, j)
will be the same across all submatrices. This is why we remove
the superscript t from T (i, j). Further, we employ a mapping
function g(x) = 1

2 (x+1) to bound the range of PCC similarity
to [0, 1].

For each submatrix, we need to solve the following opti-
mization problem:

min
U,V

1

2

∑
(i,j)∈Ω

(Oij − uiv
>
j )2 +

λ

2

(
||U||2F + ||V||2F

)
+
β

2

m∑
i=1

∑
j∈F(i)

Sij ||ui − uj ||22. (8)

Note that we leave out the superscript t for simplicity of
notations. From this equation we can see that when β = 0,
we recover SLOMA. Equation (8) can be solved by gradient
descend methods [2], [3].

IV. EXPERIMENT

In this section, we introduce the details of the experiments,
including the datasets, the evaluation metrics, and the base-
lines.

A. Datasets

We conduct the experiments on two real-world datasets:
Yelp and Douban. Yelp is a location-based website where users
can give ratings to and write reviews on items like restaurants,
theaters, and businesses. The Yelp dataset is provided by the
Yelp Dataset Challenge,5 which has been used in previous
research in recommendation [5], [18], [30]. Douban is a
Chinese website where users can rate and share their opinions
on items such as movies and books. The Douban Dataset
is obtained from [15]. In both websites, users can build
Facebook-style connections to each other and all ratings are in
the range 1 to 5. Therefore, the datasets are ideal for evaluating
the effectiveness of our proposel model.

5https://www.yelp.com/dataset challenge

We preprocess the two datasets by removing users without
any friends or with ratings fewer than 5. These users are
called, respectively, “social cold-start” and “cold start” users
in RSs. The statistics of the two preprocessed datasets are
shown in Table I. Note that in the table, R density represents
the density of the rating matrix, and S edges and S density
represent the social connections and density of the social
matrix, respectively.

B. Evaluation Metrics

We choose two evaluation metrics, Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). They are
defined as

MAE =
1

|Ω̄|
∑

(i,j)∈Ω̄

|Oij −Rij |,

RMSE =

√√√√ 1

|Ω̄|
∑

(i,j)∈Ω̄

(Oij −Rij)2,

where Ω̄ is the set of all user-item pairs (i, j) in the test set,
and Rij is the corresponding rating predicted by the algorithm.
These metrics are popular for the task of rating prediction in
the literature [2], [3], [15].

C. Experimental Settings

We compare our proposed models with the following state-
of-the-art methods:
• RegSVD [1]: It is the standard matrix factorization

method with `2 regularization. We implement it according
to [1].

• LLORMA [5]: It is based on the local low-rank as-
sumption, which SLOMA also assumes. We implement
it according to [5].

• SocReg [15]: It is a state-of-the-art method that integrates
social connections into MF by employing social connec-
tions as regularization terms. We implement it according
to [15].

• SLOMA: This is our proposed model. It utilizes social
connections among users to form social groups for local
low-rank factorization.

• SLOMA++: This is the same as SLOMA except that
it applies social regularization to the factorization of
submatrices, as is shown in Equation (7).

Following the experimental settings in [5], we also randomly
split each dataset into training and test data with a ratio of 8:2.
In the training process, the training data are used to fit the
model, and the test data are used to calculate the prediction
errors of the models. We repeat each experiment five times by
randomly splitting the datasets and report the average results.

V. ANALYSIS

In this section, we present and compare the experimental
results of our proposed SLOMA and SLOMA++ against the
baselines. We try to answer the following questions:
(1). What is the recommendation performance of our pro-

posed models comparing to the state-of-the-art methods?



TABLE I
STATISTICS OF DATASETS (R density = #Ratings

#Users×#Items
, S density = #2×S edges

#Users×#Users
).

Users Items Ratings R density S edges S density
Yelp 76,220 79,257 1,352,762 0.022% 647,451 0.022%

Douban 103,054 57,908 15,129,113 0.254% 753,358 0.028%

TABLE II
PERFORMANCE OF DIFFERENT METHODS IN YELP AND DOUBAN WITH K = 10, 20. THE BEST TWO RESULTS ARE HIGHLIGHTED. IMPROVEMENTS ARE

MEASURED BY THE REDUCTION OF RMSE COMPARING TO SLOMA++.

Datasets K Metrics RegSVD LLORMA SocReg SLOMA SLOMA++

Yelp

10

MAE 0.9478 0.9459 0.9228 0.9362 0.9301
Improve +1.87% +1.67% -0.79% +0.65%
RMSE 1.1908 1.1843 1.1802 1.1760 1.1755

Improve +1.28% +0.74% +0.40% +0.04%

20

MAE 0.9499 0.9477 0.9190 0.9389 0.9240
Improve +2.73% +2.50% -0.54% +1.59%
RMSE 1.1918 1.1862 1.1754 1.1788 1.1698

Improve +1.85% +1.38% +0.48% +0.76%

Douban

10

MAE 0.5828 0.5811 0.5662 0.5744 0.5603
Improve +3.86% +3.58% +1.04% +2.45%
RMSE 0.7347 0.7310 0.7165 0.7255 0.7105

Improve +3.29% +2.80% +0.84% +2.07%

20

MAE 0.5803 0.5779 0.5638 0.5715 0.5573
Improve +3.96% +3.56% +1.15% +2.48%
RMSE 0.7320 0.7278 0.7142 0.7225 0.7080

Improve +3.28% +2.72% +0.87% +2.01%

(2). How do the parameters in our models affect the over-
all performance? Specifically, how do the number of
submatrices and hops, i.e., distance threshold, affect
recommendation performance?

(3). What is the performance of different methods of con-
nector selection?

(4). Which submatrix construction approach, heuristic or
systematic, is better for SLOMA and SLOMA++?

A. Recommending Performance

To answer Question (1), we show the recommendation
performance of the baselines and our proposed methods in
Table II. We can see that SLOMA++ consistently outperforms
all the other methods under different Ks in both datasets. This
demonstrates the efficacy of integrating social connections
with local low-rank framework. When comparing RegSVD,
LLORMA, and SLOMA, we observe that SLOMA has better
performance than LLORMA and RegSVD, which can be at-
tributed to the better submatrices SLOMA builds with the help
of social connections. When further studying the results of
SocReg, SLOMA and SLOMA++, we can see that SLOMA++
is the best. This demonstrates that SLOMA++ makes the
best use of social connections. Taking advantage from both
the local low-rank assumption and social recommendation,
SLOMA++ beats SocReg with the local low-rank framework
and SLOMA with social regularization. Through these two
comparisons, we can conclude that both social regularization
and local low-rank can help improve the recommending per-
formance.

When comparing SLOMA and SocReg, we can see that
the performance of SocReg is consistently a bit better than
that of SLOMA. This result not only indicates the power

of social regularization but also points to a limitation of
SLOMA, that is, it does not cover the long-tail users very
well when constructing the submatrices and hence can only
predict the long-tail users’ ratings based on the mean of all the
existing ratings. The latter also explains the phenomenon that
the performance gain of SLOMA against RegSVD is limited.
Therefore, it is very important to design better submatrix
construction methods with larger coverage. We leave this for
future research.

When comparing the performance on Yelp and Douban, we
can see that the improvement on Douban is more significant
than that on Yelp, which may be attributed to Douban’s larger
density of social connections (see Table I). It means that better
performance can be obtained when social networks are dense.
This is intuitive because the more friends a user has, the more
likely his or her behaviors are affected by friends.

B. Impact of the Number of Local Models

In this section, we show how performance varies with
different numbers of local models in LLORMA, SLOMA,
SLOMA++. The results are shown in Figure 2. We also plot
the RMSEs of RegSVD and SocReg for comparison. From
the figures, we can see that with increasing number of local
models, RMSE’s of LLORMA, SLOMA, and SLOMA++
all decrease. This means that the more local models, the
better performance we can get. However, when the number is
large enough, e.g., around 30, the performance gains become
marginal. This trend is consistent with the results reported
in [5], which indicates that SLOMA and SLOMA++ show
similar performance trends to LLORMA with the number of
local models varying.



When the number of local models is smaller than 10, the
performance is not as good as what we can achieve at 30.
The reason is that fewer submatrices means less overlaps
of the local models, which impairs the ensemble prediction
accuracy according to Equation (6). Further, it also reduces
the overall coverage of SLOMA and SLOMA++, which means
more users’ ratings are predicted by the mean of other users
instead of by the learned model.

Again we can see that SLOMA++ consistently outperforms
all the other baselines when the local model is large enough,
e.g., greater than 10. In practice, it is good enough to set the
number of local models to 50, which provides good prediction
ability while avoiding higher costs of space and computation.

0 10 20 30 40 50
Number of Local Models

1.17

1.18

1.19

1.20

1.21

1.22

R
M

S
E

SLOMA

SLOMA++

LLORMA

RegSVD

SocReg

(a) K = 10@Yelp.

0 10 20 30 40 50
Number of Local Models

1.17

1.18

1.19

1.20

1.21

1.22

R
M

S
E

SLOMA

SLOMA++

LLORMA

RegSVD

SocReg

(b) K = 20@Yelp.

0 10 20 30 40 50
Number of Local Models

0.71

0.72

0.73

0.74

0.75

0.76

0.77

R
M

S
E

SLOMA

SLOMA++

LLORMA

RegSVD

SocReg

(c) K = 10@Douban.

0 10 20 30 40 50
Number of Local Models

0.70

0.71

0.72

0.73

0.74

0.75

0.76

R
M

S
E

SLOMA

SLOMA++

LLORMA

RegSVD

SocReg

(d) K = 20@Douban.

Fig. 2. RMSEs vs different numbers of local models on Yelp and Douban.
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Fig. 3. RMSEs vs different hops on Yelp and Douban.

C. Impact of the Number of Hops

In SLOMA and SLOMA++, we firstly select a small number
of connectors, and then take all of their friends within different
hops, i.e., the distance threshold d in Algorithm 2, in the
social network to construct the social groups. Therefore,
different hops mean different numbers of users included in
each social group, thus different coverages of each local
model, which results in different prediction capabilities of
the proposed models. Due to the small-world phenomenon in
social networks [31], [32], which states that two people can
be connected by a small number of intermediates in social
networks, the so-called Six Degree Separation. Thus, we limit
the hop to the range [1, 6] in the experiments.

Results are shown in Figure 3. As can be seen, the trend
of the performance w.r.t. the hop is very similar to that of the
number of local models, which is, the performance becomes
better with increasing of hops and then becomes stable when
the hop is large enough. Specifically, when hop < 3, the
performance of SLOMA and SLOMA++ is worse than those
of RegSVD and SocReg. The reason is that the coverage of
each local model is not large enough, leading to a decrease in
overall coverage of all local models. Therefore, the ensemble
ability is impaired. However, when hop ≥ 3, the performance
of SLOMA and SLOMA++ becomes better, and stable when
hop keeps increasing. Therefore, it means that a larger hop
is useful for SLOMA and SLOMA++. However, it does not
have to be very large because it will lead to higher space and
computation cost but only marginal performance gain.

An interesting observation is that on Douban, at hop >
3, the performance of SLOMA and SLOMA++ decreases to
a level that is very close to those of RegSVD and SocReg.
This means that the benefit of the local low-rank assumption
vanishes. We analyze the experimental results and find that
SLOMA and SLOMA++ can cover all the users in Douban,
thus each local model is reduced to the same one as RegSVD.
Specifically, the variance of each local model decreases when
the hop is too large, thus impairing the ensemble performance
of all local models. Therefore, in the previous experiments
comparing SLOMA and SLOMA++ against other baselines,
we set d = 3 when constructing submatrices according to
Algorithm 2.

In summary, Question (2) can be understood clearly based
on the above two sections.

D. Impact of Connector Selection Methods

In this section, we try to answer Question (3) by exploring
in depth the performance of different connector selection
methods (introduced in Section III-E). When adopting the
heuristic approaches to construct submatrices, the selection of
connectors is very important. It determines the coverages of
all local models. As we have elaborated, even though there
exist some long-tail users who are rarely selected into any
submatrix, we still want to design better heuristic approaches
to include as many of them as we can. In Figure 4, we give
the comparisons among different selection methods. Note that
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Fig. 4. RMSEs v.s different methods of identifying connectors on Yelp and Douban.

we also show the results of LLORMA as well as community-
based SLOMA, and the results of RegSVD and SocReg are
added for SLOMA and SLOMA++, respectively. We set d = 3
for different connector selection methods.

From Figure 4, we can see that Hub and Greedy outperform
all the other methods with increasing number of local models.
The better performance of Greedy lies in the fact that we
choose uncovered users as connectors with the most neighbors
each time, thus we can guarantee that all the connectors
will not be too close to each other in the social graph. It
will increase the coverage as well as the variance of all
the submatrices, which is useful for the ensemble effect of
all the local models. However, considering the clarity and
simplicity of Hub, we adopt Hub as our selection method in the
experiments reported in Section V-A. In Hub, each connector
can be regarded as the most active and influential users of
the social groups around them, which leads to a low-rank
property of the constructed submatrix. Furhter, Hub is simple
to implement.

We can see that for all the heuristic approaches, even though
Random does not provide good performance, the RMSEs of
them decrease with increasing number of local models. The
underlying reason is that we can cover more entries in the rat-
ing matrix with more local models, leading to the performance
gain for overall prediction. Taking all the heuristic approaches
and LLORMA into consideration, it further demonstrates the
efficacy of local low-rank framework.

E. Discussion on Systematic Submatrices Construction

From Figure 4, an obvious observation is that the
community-based method, i.e., systematic submatrix construc-
tion, performs very bad in all settings. We make use of
the BIGCLAM [26] to detect overlapping communities, each
of which corresponds to one submatrix in SLOMA and
SLOMA++. The number of communities is set to 50. However,

there are two problems facing the communities detected by
BIGCLAM. First, BIGCLAM tends to detect closely con-
nected groups, which leads to smaller coverage of each subma-
trix and fewer overlaps amongest all the submatrices. As we
mentioned above, it impairs the ensemble effects in the overall
prediction. Second, there are a small portion of long-tail users
(it is around 4% in our experiments) who cannot be covered by
all the communities, thus impairing the performance further.
Therefore, it solves Question (4) as well as explains why we
do not report the results of systematic approaches for SLOMA
and SLOMA++ in Section V-A. However, we leave it as future
work to detect better overlapping communities for SLOMA
and SLOMA++.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the SLOMA framework, which
addresses the problem of submatrix construction facing
LLORMA. To the best of our knowledge, it is the first
work to incorporate social connections into the local low-
rank framework. Based on the social homophily theory, we
exploit users’ social connections to construct meaningful as
well as better submatrices, which leads to superior predic-
tion model compared to LLORMA. Moreover, we integrate
social regularization to further strengthen SLOMA. Extensive
experiments have been conducted on two real-world datasets,
comparing our models against MF as well as LLORMA. The
results demonstrate that with the help of social connections,
SLOMA outperforms LLORMA and MF.
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APPENDIX A
PROOF OF LEMMA III.1

Proof. Let PΩ(A) = Aij if (i, j) ∈ Ω, and 0 otherwise. Then,
we can express Equation (2) as

min
U,V

1

2

∥∥PΩ(UV> −O)
∥∥2

F
. (9)

If U and V are the optimal solution to Equation (9), then they
should satisfy first order optimal condition as

U>PΩ(UV> −O) = 0, (10)

PΩ(UV> −O)V = 0.

As Û = UQ and V̂ = VQ−1, we have

Û>PΩ(ÛV̂> −O) = Q>U>PΩ(ÛV̂> −O)

= Q>U>PΩ(UV> −O) = 0.

where the last equality comes from Equation (10). Similarly,
we can get

PΩ(ÛV̂> −O)V̂ = 0.

Thus, we can see Û and V̂ also satisfy the optimal condition
of Equation (2), and then the Lemma holds.


