
Billion-scale Recommendation with Heterogeneous
Side Information at Taobao

Andreas Pfadler∗, Huan Zhao†, Jizhe Wang∗, Lifeng Wang∗, Pipei Huang∗ and Dik Lun Lee†
∗Alibaba Group, Beijing&Hangzhou, China

†The Hong Kong University of Science and Technology, Hong Kong SAR, China
∗{andreaswernerrober,jizhe.wjz,tiechou,pipei.hpp}@alibaba-inc.com, †{hzhaoaf,dlee}@cse.ust.hk

Abstract—In recent years, embedding models based on skip-
gram algorithm have been widely applied to real-world rec-
ommendation systems (RSs). When designing embedding-based
methods for recommendation at Taobao, there are three main
challenges: scalability, sparsity and cold start. The first problem
is inherently caused by the extremely large numbers of users
and items (in the order of billions), while the remaining two
problems are caused by the fact that most items have only
very few (or none at all) user interactions. To address these
challenges, in this work, we present a flexible and highly scalable
Side Information (SI) enhanced Skip-Gram (SISG) framework,
which is deployed at Taobao. SISG overcomes the drawbacks of
existing embedding-based models by modeling user metadata and
capturing asymmetries of user behavior. Furthermore, as training
SISG can be performed using any SGNS implementation, we
present our production deployment of SISG on a custom-built
word2vec engine, which allows us to compute item and SI
embedding vectors for billion-scale sets of products in a join
semantic space on a daily basis. Finally, using offline and online
experiments we demonstrate the significant superiority of SISG
over our previously deployed framework, EGES, and a well-
tuned CF, as well as present evidence supporting our scalability
claims.

Index Terms—large-scale recommendation, embedding-based
methods

I. INTRODUCTION

Recommender Systems (RSs) have been a major driving

force behind the online E-commerce business at Taobao,

China’s largest online consumer-to-consumer (C2C) platform

owned by Alibaba. The key role of RS is to provide users

with interesting items, i.e., commodities, which can improve

both user satisfaction and overall conversion rate. However,

Taobao’s billion-scale set of users and items present extreme

challenges to the deployment of an effective RS solution.

To address scalability, the RS platform employs a two-stage

pipeline. The first stage is matching, and the second is

ranking. In the matching stage, a candidate set of similar

items is obtained for each item that users have interacted with.

Then, in the ranking stage, a prediction model, e.g. a deep

neural network model [2]–[4], ranks the candidate items for

each user according to his or her preferences.

In this paper, we focus on the matching stage, for which

the key task is to compute the similarity between items.

This process is very important, since only a small number

Andreas Pfadler and Huan Zhao contributed equally to this work, and Pipei
Huang is the corresponding author.

(thousands) of items are selected out of roughly 1 billion

items into the candidate set when a user clicks an item.

Traditionally, collaborative filtering (CF) methods [10], [12]

have been adopted to compute item similarity, which rely on

the co-occurrence of two items in user behavior sequences.

Recently, researchers have proposed to compute the item sim-

ilarities based on embedding methods, which represent each

item with a low-dimensional vector, i.e., embedding. The key

component is built on top of a skip-gram based algorithm from

word2vec [14], [15], which has been demonstrated effective

for learning word embeddings according to “context informa-

tion” from sequences of words, i.e., sentences. Likewise, by

modeling users’ clicked items as sequences, a series of em-

bedding methods have been proposed for recommendation [6],

[11], [22], [24], [30].

When using embedding methods for recommendation at

Taobao, there are three general challenges: scalability, sparsity

and cold start. The first problem is inherently caused by

the extremely large numbers of users and items, while the

remaining two problems are caused by the fact that most items

have only very few (or none at all) user interactions. In the

literature, to alleviate the sparsity and cold start problems,

researchers have tried to utilize side information (SI), e.g., item

metadata [28] or social connections among users [25], [27],

which can provide supervisions to infer users’ preferences

when their clicked behaviors are sparse. However, the scal-

ability challenge becomes more critical when incorporating

heterogeneous SI since the scale of the total numbers of SIs

is the same as that of users and items.

To the best of our knowledge, no existing embedding based

methods [6], [11], [22], [24], [30] have been reported to be

able to work on the scale that is required at Taobao, i.e.

billions of items. Besides, when modeling users’ behavior

sequences with the skip-gram framework, they ignore the

inherent asymmetry exhibited in user behaviors, that is, the

probability of a user clicking item B after item A is rarely

the same as that of clicking A after B. In our case, since we

need to predict which item a user will click based on his/her

previous click sequences (see Figure 1(a)), the order of user

clicks matters.

We can thus summarize the key problems we faced in our

production scenario as follows: How can we build a matching
engine which includes heterogeneous SIs, i.e., item and user
metadata, models user behavior asymmetries, provides embed-

1667

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00148

(a) User behavior sequences. (b) EGES framework. (c) SISG framework.

Fig. 1. a) User behavior sequences; Different sessions are separated by dashed lines; b) The EGES framework; c) The SISG framework.

dings in a joint semantic space, all the while still being able
to scale up to billions of items ? Moreover, how can we make

sure that all (possibly billions) embeddings may be computed

on a daily basis?

The above considerations have led us to revisit embedding-

based approaches for recommendation based on the key

component of word2vec: Skip-Gram with Negative Sampling

(SGNS) [6], [7], [22]. Based on this well-established ap-

proach, we have designed a highly-scalable and flexible SI

enhanced Skip-Gram (SISG) framework for performing the

recommendation task at Taobao. The key advantage of SISG

consists is that training may in principle be implemented using

any word2vec [15] implementation. Unfortunately, at the time

there were no suitable word2vec implementations available

which could support our scalability requirements. We have

thus chosen to implement SISG on top of a customized and

and distributed word2vec engine, the key components of which

are described in this article.

Overall, the spotlights of this paper can be summarized as

follows:

• Flexible handling of user and item SIs. Our SISG

framework is flexible enough to incorporate any type of

SI, including item and user metadata, which have been

shown to be highly effective for the recommendation

task [20], [22], [25], [28], [29]. This flexible design

allows SISG to be applied to other recommendation

scenarios with simple modifications.

• Capturing asymmetry of user behaviors. We customize

SISG in its sampling of skip-grams and similarity compu-

tation to differentiate the transition probability from one

item to another and the other way around. We conduct

extensive experiments to demonstrate the effectiveness of

capturing the asymmetry underlying user behaviors.

• Efficient distributed training pipeline. To deploy the

SISG framework in Taobao production environment,

where billion-scale sets of users and items are available,

we have implemented a customized word2vec engine

based on two novel key components: Global training with

Adapted Target Negative Sampling (ATNS) and Heuristic

Balanced Graph Partition (HBGP). ATNS can greatly

decrease the communication cost across workers when

training SISG and scale to arbitrary graph sizes. HBGP

is designed to allocate computational resources uniformly.

Based on these two techniques, SISG can be fully trained

on 9.5 trillion training samples in approximately 13 hours

with 32 workers, which makes it possible for daily update

at Taobao.

• Practicability: Because SISG is applied directly to

recording user click sessions, the data preprocessing

and preparation pipeline is straightforward and simple.

Moreover, after a simple enrichment of user click sessions

with SI instances, the resulting training data may be

fed directly into any standard SGNS implementation,

such as word2vec [14], [15]. Through this paper, we

introduce in detail hands-on experiences in training and

deploying billion-scale embedding models at Taobao, and

we believe it can benefit practitioners working in this

area.

The remainder of this paper is organized as follows: In

Section II we describe the fundamentals of the SISG frame-

work. We then present our implementation of a distributed,

highly scalable training algorithm for SISG in Section III.

Furthermore, in Section IV we present both offline and online

experimental results and scalability performance of SISG

framework. Finally, we review related work and conclude this

work in Sections V and VI, respectively.

II. METHOD

As introduced in Section I, we are working on the match-

ing stage, where the key task is the item-to-item similarity

computation. When a user interacts with an item, e.g. clicks

on an item or adds it to the shopping cart, a candidate

set of items to be displayed can be retrieved according to

their similarity with the previously interacted item. Recording

all user click sessions over a period of several days, we

obtain a set S of user behavior sequences, where each entry

Su = (v1, v2, · · · vp) ∈ S is a specific sequential behavior of

user u in one session,1 as shown in Figure 1(a).

1The duration of each session depends on different scenarios implemented
in our log parsers and may vary between one hour and one day.

1668

A. Brief review of SGNS

Given a user behavior sequence Su = (v1, v2, · · · vp) ∈ S ,

the goal of SGNS is to learn a low dimensional representation

vi ∈ R
d for each item vi, such that similar items are

closer in the embedding space. Formally, the objective of this

framework is to learn low-dimensional representation for items

from the entire behavior set S. Motivated by the well-known

word2vec [14], [15], we need to maximize the following

objective function L over S:

L =
∑

S∈S

∑

vi∈S

∑

−m≤j≤m,j �=0

logPr(vi+j |vi). (1)

Pr(vi+j |vi) denotes the probability of observing a context

item vi+j given the target item vi and is defined using the

softmax function:

Pr(vi+j |vi) =
exp(vT

i v′i+j)
∑|I|

l=1 exp(vT
i v′l)

, (2)

where vi and v′i are the input and output embeddings of item

vi. The context is defined by a fixed-size window of length

m > 0 centered around a target item vi. I is the set of all

items at Taobao. We can see that the proposed framework

actually models the co-occurrence of items in user behavior

sequences, so that items with similar context will be closer in

the embedding space.

In practice, it is computational infeasible to optimize

Eq. (1). Hence, the negative sampling method is adopted

[14], [15]. In particular, a set Dp of positive pairs (vi, vj) is

constructed, where vi is the target item, and vj is the context,

which is an item occurring within a window of length m
centered around item vi. Additionally, a set Dn of negative

pairs (vi, vt) is constructed, where vi is the target item, and

vt is randomly sampled from the entire item set I. Then, the

optimization objective (1) becomes

max
∑

(vi,vj)∈Dp

log σ(vT
i v′j) +

∑

(vi,vt)∈Dn

log σ(−vT
i v′t) , (3)

where σ is the sigmoid function σ(x) = 1
1+e−x . At Taobao,

the ratio of negative samples to positive ones is empirically

set to 20 in production environment.

B. Side Information Enhanced Skip Gram framework (SISG)

Based on the Skip-Gram method, item embeddings can

be learned and then used to compute the similarity between

items. The effectiveness of this model comes from the fact

that it is able to capture the co-occurrence of two items

in user behavior sequences. However, for those items which

occur infrequently, even in the extreme case that new items

have no user interactions, it is difficult to learn accurate

representations. These problems, denoted as sparsity and cold
start, have been the major challenges facing RSs, and in the

literature, extensive works have been explored to address these

challenges by incorporating heterogeneous SI [6], [20], [28],

[29]. Likewise, at Taobao, we turn to SI for these challenges.

Table I: Item and User Features used for SISG. All features take discrete
integer values. In the final training sequences they are encoded as
[FeatureName]_[FeatureValue], e.g. “leaf category 1234”.

Item
top level category, leaf category,
shop, city, brand, style, material,
age gender purchase level (cross feature)

User age gender (cross feature), user tags

In this paper, we refer to as SI metadata of items or users,

e.g. the category of an item, or the gender of users. It is

intuitive to assume that items with similar SI should also be

similar and thus closer in the embedding space. To make use

of these SI at Taobao, we design a flexible mechanism as

follows: given a user behavior sequence Su = (v1, · · · , vp)
for user u we enrich this sequence by injecting both item SI

SIki “nodes” and “user types” UTu. The enriched sequence,

denoted as S̃, then takes the form

v1, SI
1
1 , · · · , SI1n, · · · , vp, SIp1 , · · · , SIpn, UTu, (4)

where SIik denotes the k-th SI for item vi, UTu represents the

user types for user u, n is the number of all SI. In this context,

a user type is understood as a fine grained categorization of

users based on a combination of various user metadata, e.g.

one particular user type could contain all female users aged

between 31 and 35, who are married, have children and posses

a car. Similar to all other possible SI, every user type UTu is

represented in the form

UT_[gender]_[age]_[t1]_[t2]_[t3]_...

where for instance gender could be “F” (for female),

age could be “19-25”, and all tags are substituted with

indicators t1,t2,t3,· · · , which further characterize a user

type. For the above example, we would for instance obtain

married_haschildren_hascar. The number of tags

per user type may vary. See Table I for an overview of the

item and user meta data used in our experiments, which have

been demonstrated useful for recommendation at Taobao.

The entire “SI-enhanced” sequences of the form (4) can then

be fed into any standard SGNS implementation, which will

output the final embeddings vj , SIkk, and UTu. The framework

of SISG is shown in Figure 1(c). It is clear that by construction

this will ensure that the embeddings of items which have often

been clicked within one session, items with similar SIs, items

clicked on by similar user types, and user types of users which

have clicked similar items, will all lie to close to each other

in one semantic vector space. Here “closeness” is understood

as a large cosine similarity between two vectors.

C. Capturing Asymmetric User Behavior

In the standard skip-gram method, as shown in Section II-A,

when we construct positive samples from a given user behavior

sequence, (vi, vj) are sampled from a symmetric window

Wm(vi) = {vi+j | −m ≤ j ≤ m, j �= 0} around the

center item vi. However, it ignores the order information

in the user behavior sequence. For example, given a user

behavior sequence S = (v1, v2, · · · , vp) for user u, without

loss of generality, assuming i < j, we can construct two

1669

positive samples (vi, vj) and (vj , vi) when using vi and vj ,

respectively, as target items. However, from the sequence,

we know that user u clicks vj after clicking vi, but not the

other way around. In other words, we should recommend vj
as candidate set of similar items for vi, but not vice versa.

We refer to this phenomenon as “asymmetry” underlying

user behaviors, and it is clearly problematic to ignore this

asymmetry. Hence, in order to capture asymmetry of user

behavior, it is reasonable to restrict sampling to only the right

or left context window of an item vi (depending on how the

sequence is ordered). Since items in our sequences are ordered

from left to right w.r.t the sequence of actions of a user, we

thus sample skip-grams only from the right context window

of very element in a sequence.

In the Skip-Gram framework, for an item vi, we obtain two

groups of vectors: an input vector vi when the item is used as

target item, and an output vector v′i, when it is used as context

item. In most previous work using Skip-Gram embeddings

for similarity calculation output vectors v′i are discarded and

similarities are obtained from the inner product between input

vectors only. While this can be justified, as long as (vi, vj) are

sampled from symmetric context windows, this is no longer

reasonable when using only the left or right context window.

We thus proceed along the lines of [18] and [31], where

similar methods are discussed in the context of preserving

“asymmetric transitivity” for graph embedding. In particular,

we also compute similarities for pairs (vi, vj) and (vj , vi) via

vT
i v′j and vTj v′i, respectively.

In our experiments, we have been able to observe a sig-

nificant increase in recommending accuracy, once we take

into account different directions in our SISG implementation.

This is in line with what we typically observe in our user

behavior sequences. On average, for our users we estimate

the probability for a significant difference between the number

of clicks vi → vj and vj → vi to be around 20%. In

Section IV-A, the experimental results demonstrate the effec-

tiveness of incorporating asymmetry of user behaviors.

D. Comparison with our Previous Work

Previously, our team have designed a graph embedding

based framework for recommendation [23], where an item

graph is firstly constructed from user behavior sequences and

then item sequences are generated using a random walk on

the constructed graph. These sequences are then fed into

a modified SGNS framework. To alleviate the cold start

problem, item meta data are incorporated in a manner shown

in Figure 1(b). Despite its superiority in capturing higher-order

similarity between items over conventional CF-based methods,

here we point out several limitations of EGES, which motivate

us to design the proposed SISG framework.

A major problem of EGES is the information loss that

occurs when the item graph is constructed from user behav-

ior sequences. Specifically, we lose the link between user

IDs and the behavior sequences. Thus, user metadata cannot

be employed, especially for cold start users, who have no

records of previous purchases or browsing sessions. Further,

as mentioned in Section I, it also ignores the asymmetry

of user behaviors, leading to a suboptimal solution. Lastly,

when deploying EGES in our production environment, the

item graph is split along item categories into a number of

smaller subgraphs, each of which has less than 50 million

nodes. Thus, each subgraph can be processed by one worker

and trained in parallel. However, edges between subgraphs

are removed, which leads to information loss and subgraphs

are embedded in different semantic spaces. Hence, despite

EGES’s performance gain compared to well-tuned CF [23],

the proposed SISG framework in this work have evident

advantages.

III. DISTRIBUTED TRAINING MECHANISM

Clearly, the SISG framework could be implemented using

any standard implementation such as word2vec. 2 However,

this is challenging when the “vocabulary” size, i.e. the number

of items and SI is in the order of billions (we obtain around

5 × 1010 “tokens” when training SISG for online A/B test).

Thus, a distributed training mechanism has to be used.

Due to the structure exhibited by typical SGD-based op-

timization algorithms for learning skip-gram models, a dis-

tributed training algorithm becomes very difficult to imple-

ment, once all input and output vectors do not fit into a

single machine’s memory. To address this problem we have

deployed a variant of the TNS-algorithm (Target Negative

Sampling) [21]. The general structure of this algorithm is given

in Algorithm 1.

The basic idea is as follows: First, all items vi are assigned

to one partition per worker. Every worker constructs its own

local noise distribution and then independently samples pairs

(vi, vj) from the entire behavior sequences. If vi is not

managed by Worker A, the pair is ignored. Otherwise the

output vector for vi is sent to the Worker A′ , which manages

vj . On A′ negative samples are drawn from the local noise

distribution. All gradients for input and output vectors, as

well as gradient updates for output vectors are computed.

Eventually the gradient w.r.t the input vector of vi is returned

to Worker A, which performs the final gradient update.

For any distributed Skip-Gram implementation, once vectors

are distributed across several machines each managing only a

partition of all vectors, very high communication costs may

arise, especially considering that negative samples are drawn

from a global noise distribution when following standard

Skip-Gram recipes. In general, following the TNS approach,

communication costs are already kept somewhat in check.

Nevertheless, for our particular case this has not been proven

optimal. We have thus employed an adapted Target Negative

Sampling Algorithm, which is characterized by a smart par-

titioning strategy based on HBGP and a special treatment of

vectors for high frequency SI.

A. Adapted Target Negative Sampling

At Taobao, we still face another challenging problem when

applying the TNS approach, which is the extremely imbal-

2https://code.google.com/archive/p/word2vec/

1670

Algorithm 1 Distributed SISG using TNS.

1: for S ∈ S do
2: for vi ∈ S do
3: Sample pair (vi, vj) from S;

4: A := Current worker

5: A′ := Worker processing vj
6: if vi processed by A and vj processed by A’ then
7: Get ∂viL by calling TNS(vi, vj) on A′;
8: vi := vi − η∂viL
9: end if

10: end for
11: end for
12: function TNS(vi, vj)

13: Compute ∂v′jL.

14: v′j := v′j − η∂v′jL
15: Sample N negatives vt from local noise distribution;

16: for all negative samples vt do
17: v′t := v′t − η∂v′tL
18: end for
19: Compute ∂viL
20: return ∂viL
21: end function

anced distribution of “word frequencies” for items and SI. Hot

items tend to occur in most user behavior sequences, and some

types of SI columns might contain only a small number of

distinct feature values (e.g. “Gender” takes only three values:

“female”, “male”, “null”). Thus, a very large number of pairs

may end up being processed by a single worker, while the

remaining workers have already finished processing. As this

will impact both the overall efficiency, and lead to convergence

problems, we have modified TNS in the following way:

• High frequency “words” are aggressively down sampled.

• Our implementation of TNS allows the top-K frequent

items to be kept in all partitions at the same time. The

corresponding vectors are then synchronized (averaged)

at regular intervals.

We denote this approach as Adapted TNS (ATNS).

Since most high frequency “words” are SIs, the above two

points do not address the problem of hot items. Also, they do

not take into account that most sequences contain items from

one leaf category only, which, when properly exploited, could

decrease communication costs even further. To leverage this

structure, we have further implemented a smart partitioning

strategy, which will be presented in the next section.

B. Heuristic Balanced Graph Partitioning

As outlined in the previous section, it is still possible

to reduce communication costs further. A key observation

regarding our user behaviors makes this possible. That is that

most Taobao users tend to view items from one leaf category

only within one browsing session. Thus we can split the data

along item leaf categories, which implies that for a sampled

pair (vi, vj) the probability of both items being managed by

the same worker increases. This obviously lowers the number

Fig. 2. HBGP strategy. We illustrate our partition strategy with this example.
In the current step, we have grouped all the leaf categories into three groups,
denoted as C1, C2, C3, and the corresponding figures are the total frequency
of items in each group. The weights of edges connecting two groups are the
total transition frequency between items across these two groups. According
to the heuristic strategy, it is better to merge groups C1 and C2 into a new
group Ĉ1 and keep C3, denoted as Ĉ2, after considering the communication
(transition frequency should be as small as possible between groups) and
computational (item frequency should be closer across different groups) costs.

of remote calls of the TNS function in Algorithm 1 and thus

decreases communication costs.

However, the number of workers is typically much smaller

than that of leaf categories on Taobao. Thus, we have to put

the items of several leaf categories in one partition. Our goal

is to design this assignment in such a way that

1) The overall frequency of all items in each worker should

be about the same.

2) The probability of the two items in a pair to be assigned

to two different workers should be small.

To achieve a balanced assignment given the number of

partitions w, i.e., number of workers, we design the following

HBGP strategy (an illustrative example is given in Figure 2):

1) Construct a directed weighted item graph G from user

behaviors sequences S, where the weight of each edge is

the total transition frequency of two nodes in all behavior

sequences.

2) Reduce the item graph G to a graph G̃ = (Ṽ, Ẽ) contain-

ing only leaf-category nodes. The transition frequency

between two leaf-category nodes in G̃ is the sum of

frequencies of edges in G that connect the same two

leaf categories. Moreover, for C ∈ Ṽ , let |C| denote the

number of times the items from category C appear in

the set of training sequences.

3) Iteratively merge nodes of G̃:

a) Find the edge (C1, C2) with the largest sum of

transition frequencies for the two directions.

b) Merge C1 and C2, if |C1|+|C2| ≤ β ·|V|/w, where

β ≥ 1 is a user defined parameter specifying the

maximally imbalance allowed. Otherwise goto (a).

c) Recalculate all transition frequencies accordingly

after merging C1 and C2.

d) Stop when G̃ only consists of w nodes, i.e., the

required number of partitions is obtained.

e) If |C1| + |C2| ≤ β · |V|/w holds for none of the

edges, increase β and repeat (3).

Using this heuristic strategy, we succeed in training our

SISG framework with 800 million items, while still allowing

for a further scale up to 2 billion or more items by increasing

the number of workers. We present the scalability performance

in Section IV-D. In our production environment, β is set

1671

to 1.2 empirically. According to the existing literature, this

strategy is related to a variant of the well-known K-minimum

cut problem [5], where the output partitions have pre-defined

sizes. Better approximation algorithms in our scenarios are

left for future work. We also mention that the above method

only assigns items to partitions, but not SI or user types. For

these we rely on the caching (averaging) strategy outlined in

the previous section, as long as their frequencies are large

enough to impact the overall computational efficiency. We now

conclude this section with an overall description of the entire

training process.

C. Training Pipeline

Overall, our training process consists of the following

stages:

1) Transform all item sequences S into the enriched se-

quences S̃ according to (4).

2) Count item, user type and SI frequencies in S̃ and store

them in a dictionary D,

3) Partition D into (P1,P2, . . . ,Pw), where w > 0 denotes

the number of workers. The target partition for items is

determined according to the strategy outlined in Section

III-B, while the target partitions for SI and user types

are assigned randomly.

4) Determine the set of shared nodes Q containing all

elements in D with frequency above a certain threshold.

In our setting, this has the effect of Q usually containing

the most common SI features such as age, gender, color,

etc.

The training process is performed according to Algorithm 1.

We mention further the implementation details regarding

pair sampling and generation of negative samples:

• We have implemented the sampling of pairs (vi, vj)
following the standard word2vec implementation, with

an additional option to switch to using the right context

window only in order to train directional models. Since

all of our training sequences have a fixed maximal length,

we can adjust the window size, such that all possible pairs

per sequence are sampled.

• We also apply the same method of subsampling the very

frequent pairs as proposed originally in [16]. In our

setting it has proven useful to agressively downsample

very frequent pairs caused by some of the additional SI.

• Every worker maintains its own noise distribution for the

elements of Pj ∪ Q, where the probability of drawing v
as a negative sample is modeled in such a way that

Pnoise(v) ∼ freq(v)α,

where we use the standard choice of α = 0.75.

IV. EXPERIMENTS

In this section, we present extensive experimental results

to demonstrate the effectiveness and scalability of SISG for

recommendation at Taobao.

Table II: Statistics of three datasets. Taobao25M is used for offline
experiments, and Taobao100M is used for online A/B test. We further train
SISG on even larger datasets, such as Taobao800M, which consists of 800

million items. In practice, we train and deploy SISG online on the two
larger datasets. Since they exhibited similar CTR gains, we use the smaller

Taobao100M dataset to support daily recommendation for the Taobao
Homepage scenario and train on the Taobao800M dataset for other

downstream tasks which need full data. Here “#tokens” represents the total
number of items and their corresponding SI instances.

Taobao25M Taobao100M Taobao800M

#Items 25,549,673 105,412,789 806,166,969
#SI 8 8 8

#User types 214,097 228,958 250,409
#Tokens ∼ 2.3× 1010 ∼ 5.0× 1010 ∼ 2.0× 1011

#Positive pairs ∼ 2.0× 1011 ∼ 4.6× 1011 ∼ 1.8× 1012

#Training pairs ∼ 1.2× 1012 ∼ 9.5× 1012 ∼ 3.7× 1013

A. Offline Evaluation

Datasets. To conduct offline experiments, we create a

dataset containing user behavior sequences collected over

seven days. Denoted as Taobao25M, it contains roughly twenty

five million Taobao items. The corresponding SIs are also

collected. The statistics of Taobao25M is shown in Table II.

Next Item Recommendation. To evaluate our framework,

we choose the next item recommendation task, which aims

at recommending an item to a user given his/her behavior

sequence. In particular, behavior sequences of all users are

taken. For each sequence S = (v1, v2, · · · , vp), we first use

(v1, v2, · · · , vp−2) for training, and tune SISG based on the

performance on vp−1 to obtain the best hyper-parameters.

Then we train SISG on (v1, v2, · · · , vp−1) and report the

performance of SISG on vp. After training SISG, we use the

embeddings to retrieve the K most similar items, denoted as

SK(vp−1) to item vp−1. To evaluate the performance, we use

HitRate (HR) as our metric, which is defined as:

HR@K =
1

|S|
∑

S∈S
I(vp ∈ SK(vp−1)), (5)

where I(·) is the indicator function. S is the set of all user

behavior sequences.

Variants of SISG. To show the influence of different

components of SISG, we use the following model variants:

• SGNS: Classic SGNS applied to sequences of items only

(no SI, no user types).

• EGES: Our previous work on top of the graph embedding

framework [23], which only incorporates item metadata

as SI.

• SISG-F: SISG with sequences of the form (4) without

addition of user types. Asymmetry of user behaviors are

ignored.

• SISG-U: SISG applied to sequences of items only (no

SI) with the addition of user-types.

• SISG-F-U: SISG-F with additional injection of user types

into the sequences.

• SISG-F-U-D: SISG-F-U extended to account for asym-

metry of user behaviors.

In all experiments, we compute similarities using the stan-

dard cosine similarity. We choose d = 128 as the embedding

1672

Table III: HRs of different variants of SISG. The performance gain comparing to SGNS is shown next to the corresponding metric. The best performance
gain is highlighted in bold, which is obtained by SISG-F-D-U, demonstrating the effectiveness of every component in SISG: heterogeneous SI, including

metadata of items and users, as well as asymmetry in user behaviors.

Variants HR@1 increase HR@10 increase HR@20 increase HR@100 increase HR@200 increase

SGNS 0.0043 - 0.0119 - 0.0150 - 0.0248 - 0.0308 -
EGES 0.0041 -5.65% 0.0143 20.17% 0.0186 24.00% 0.0321 29.44% 0.0400 29.87%
SISG-F 0.0054 25.58% 0.0174 46.22% 0.0224 49.33% 0.0370 49.19% 0.0450 46.10%
SISG-U 0.0051 18.60% 0.0145 21.85% 0.0180 20.00% 0.0289 16.53% 0.0353 14.61%
SISG-F-U 0.0057 32.56% 0.0184 54.62% 0.0238 58.67% 0.0391 57.66% 0.0474 53.90%
SISG-F-U-D 0.0078 81.40% 0.0293 146.22% 0.0395 163.33% 0.0702 183.06% 0.0863 180.19%

space dimension and train for T = 2 epochs using Nneg = 20
negative samples. The results of our offline evaluation are pre-

sented in Table III. From these results we have the following

observations:

• SISG-F-U-D outperforms all the other variants in HRs

with different Ks, which demonstrates the effectiveness

of every component in SISG, i.e., heterogeneous SI,

including metadata of items and users, and capturing the

asymmetry of user behaviors. In particularly, compared

to basic SGNS, the performance gain is 180.19% in

HR@200, which is very significant in practice.

• When comparing SISG-F and EGES with SGNS, we can

see that the performance gain of SISG-F is larger than

that of EGES. Note that both SISG-F and EGES are

using the same SI. Thus, through the novel design in

Section II-B, SISG can make more effective use of SI

than EGES. Another way to explain the superior perfor-

mance of SISG-F over EGES is from the perspective of

combination of positive pairs between item and SIs. As

shown in Figures 1(b) and 1(c), the positive pairs for

EGES only include the combinations like “input item,

output item” and “SI of input item, output item”, while

those for SISG-F include more combinations like “input

item, SI of output item” or “SI of input item, SI of

output item”. In this sense, we can thus argue that the

SISG-F model is more expressive than EGES. In terms of

model parameters, this is reflected by the fact that in the

EGES model SI vectors do not have corresponding output

vectors, while in the SISG-F model every SI possesses

both an input and an output vector.

• When comparing SISG-U, SISG-F with SGNS, we can

see that the performance gain by SISG-F is much higher

than that of SISG-U. This implies that item SI plays a

more important role than user types.

B. Online Evaluation

In this section, we report the online performance of SISG-F-

U-D deployed in our production systems in an A/B test setting.

Our metric is Click-Through-Rate (CTR) on the homepage of

the Mobile Taobao App. We run SISG on around 100 million

items, denoted by Taobao100M as shown in Table II. We

use SISG-F-U-D to generate a number of similar items as

recommendation candidates for each item. The final recom-

mendation results on the homepage in Taobao are generated

by the ranking engine, which is implemented based on a deep

neural network model. We use the same method to rank the

candidate items in the experiment. We report the performance

comparisons between SISG-F-U-D with well-tuned CF during

an 8-day period in January 2019. The results are shown in

Figure 3.

Fig. 3. Online CTRs of different methods during eight days in January 2019.

From Figure 3, we can see that SISG-F-U-D outperforms

well-tuned CF very significantly (the improvement is 10.01%),

which demonstrates the effectiveness of SISG. Note that

we did not deploy EGES online as it is much more time-

consuming than CF to deploy in the production systems

at Taobao. Thus, it is not considered due to the inferior

performance to SISG in production environment for the sake

of computational resource. However, from the experimental

results reported in last year [23], the performance gain by

EGES over the same well-tuned CF is around 3% during a 7-

day period around the Double Eleven Festival in 2017. Taking

into consideration this and the offline experimental results in

Section IV-A, we can see that SISG outperforms EGES in a

large margin.

C. Case Study

In this part, we present a few real-world cases to show some

interesting observations based on the embeddings learned by

SISG from billion-scale sets of Taobao users and items.

1) Cold Start Users: At Taobao, it remains challenging

to recommend for cold start users, i.e. users who have no

behavior histories. In that case, we may take the average of

all user type vectors matching a particular user. For example,

if we would like to recommend items to a female user between

1673

Fig. 4. Example: Cold start recommendations for different user groups. We compare cold start recommendations for different user groups and observe clear
differences in user behavior regarding gender, age, and purchasing power. While the differences between female and male users are obvious, we also note that
both female and male users with higher purchasing power are recommended more items from expensive brands (Adidas shoes, Apple iPhone). The differences
between age groups are especially pronounced for male users, where recommended items for relatively young users and seniors differ greatly.

Fig. 5. Example: t-SNE [13] plot of user type embeddings. Evidently, users
show different behaviors in terms of gender and age.

21 and 25 years old, we can take the average of all user

type vectors which belong to a user type containing the

“female” and “age 21-25” features. Example recommendations

using this approach are shown in Figure 4, which contains

recommendations generated for different groups of users. We

can observe the distinctive difference across different groups

of users. For example, fashionable clothes or shoes tend to be

recommended to female users between 26 and 30 years old,

while iPhones tend to be recommended to male users with

higher purchasing power between 25 and 30.

From Figure 4, it is clear that female and male users

have significantly different recommendation results, which are

consistent with general trends among Taobao users. We further

show a t-SNE [13] plot of roughly 50,000 user type vectors

in Figure 5. As is clearly visible, “male” and “female” user

type vectors concentrate in different regions of the embed-

ding space, and within each region, clusters corresponding to

different age groups are visible.

2) Cold Start Items: We briefly sketch how the SISG

framework supports recommendation of cold start items, for

which there is no training data available. Suppose that we are

given a new item v, for which there exists no user interaction

data relating it to other items. Here we “infer” an embedding

vector v for vj via

v =
s∑

k=1

SIk(v), (6)

with SIk(v) denoting the SI vectors corresponding to the

metadata of the new item v. We then proceed by finding the

most similar vectors for v. In Figure 6 we give an example

for such cold-start recommendations obtained via (6).

Fig. 6. Example for cold start item recommendation: For the item on the
left we obtain recommendations by using the trained item vector (top right
row) and compared it to recommendations obtained using (6), which uses SI
vectors only (bottom right row).

D. Scalability

As introduced in Section III, to implement SISG at Taobao

where billions of items are available, we implemented a

distributed mechanism to train SISG with two key practical

components: ATNS and HBGP. In this section, we conduct

two experiments to demonstrate the scalability of SISG.

First, we train SISG with different number of workers and

expect the training time to be proportional to the inverse of

the number of workers, as explained in Section III. To show

this, we train SISG on Taobao100M dataset. The statistics

of this dataset are shown in Table II. All the tests are run

on a cluster of machines with 480G memory, 50 CPU cores

at 2.5GHZ, and 10Gbps Ethernet. Training time are reported

in Figure 7(a), which show that with the number of workers

increasing, the training time decreases. In particular, the trend

is very close to the function y = 1
x , which demonstrates that

the training time is proportional to the inverse of the number

of workers.

1674

In the second experiment we measure training time while

varying the corpus size, i.e. the total number of all tokens

including items and SI. The experiments are conducted on a

fixed number of workers (32). We use “billion tokens per hour”

as the definition of training speed to evaluate the performance.

The experimental results are shown in Figure 7(b). We can see

that the speed decreases when the corpus size increases, and

becomes relatively stable when the corpus size is beyond 12.8
billion.

From the above two results, we can see that SISG is highly-

scalable and able to deal with billions of real-world items at

Taobao.

(a) Training time w.r.t different
number of workers.

(b) Training speed w.r.t. different cor-
pus sizes, i.e., number of tokens.

Fig. 7. Training time of SISG on Taobao100M dataset.

V. RELATED WORK

In this section, we review the related work, including skip-

gram models for recommendation and large-scale distributed

skip-gram.

A. Skip-Gram Models for Recommendation
Skip-gram models were first used in the context of word

embeddings (e.g. see the seminal work of Mikolov [14], [15])

and later for graph embedding problems [8], [19] by learning

an embedding from a “corpus” of random walk or similarly

generated node sequences. Given the success of word2vec and

graph embedding based methods, skip-gram models have been

applied to recommendation scenarios to learn embeddings of

items, which are used to compute similarities. This approach

has been explored previously in [6], [7], [22]–[24], [26],

[28]–[31]. In this work, by revisiting these works, we design

a flexible skip-gram framework at Taobao, which integrates

the advantages of previous works. Moreover, we deploy our

framework in real-world production environment for a billion-

scale set of users and items.

B. Large-Scale Distributed Skip-Gram
Initially, distributed implementations for Skip-Gram with

Negative Sampling adopted a pure data parallelism strat-

egy [1], [9]. In order to allow larger vocabularies, Ordentlich et

al. [17] proposed sharding of embedding vectors by dimension,

rather than than nodes. For our work we have extended the

TNS method first presented in [21], which was studied in the

context of word embeddings for text corpora with very large

vocabularies. Besides, we further design a HBGP strategy,

contributing to successful training of SISG on a billion-scale

set of items at Taobao.

VI. CONCLUSION AND FUTURE WORK

Motivated by the success of embedding methods, we present

a flexible and highly scalable skip-gram model, SISG, to ad-

dress challenges of embedding models for recommendation at

Taobao. SISG leverages heterogeneous SI, including item and

user metadata and captures the asymmetry of user behaviors

to achieve significantly superior recommendation performance

over EGES and other baselines. In addition, to be able to train

SISG on a billion-scale set of items and users, we design an

effective distributed mechanism featuring an adaptive target

negative sampling (ATNS) technique and heuristic balanced

graph partition strategy (HBGP). By conducting extensive

experiments, including offline and online evaluations, real-

world case studies, and scalability tests, we demonstrate the

effectiveness of SISG in real-world recommendation scenarios

at Taobao. In summary, this work presents an effective and ef-

ficient embedding-based framework for practitioners working

on similar large-scale recommendation applications.

For future work, we plan to include other types of SI into

SISG, in particular, textual and visual information at Taobao.

VII. ACKNOWLEDGMENTS

Huan Zhao and Dik Lun Lee were supported by the

Research Grants Council HKSAR GRF (No.16215019). We

would like to thank colleagues of our team - Wei Li, Qiwei

Chen, Chao Li, Zhiyuan Liu, Yuchi Xu, Mengmeng Wu,

Jiaming Xu and Wen Chen for useful discussions and supports

on this work. We are grateful to Zilin Lee, Qiyi Huang

and Zhengping Qian from Alibaba graph computation team

with whom we cooperated for this work. We also thank

the anonymous reviewers for their valuable comments and

suggestions that help improve the quality of this manuscript.

REFERENCES

[1] Apache spark, mllib - word2vec implementation. https://spark.apache.
org/docs/latest/mllib-feature-extraction.html\#word2vec.

[2] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior
sequence transformer for e-commerce recommendation in alibaba. In
Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, pages 1–4, 2019.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide and deep learning for recommender systems,
2016.

[4] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In RecSys, pages 191–198, 2016.

[5] Olivier Goldschmidt and Dorit S Hochbaum. Polynomial algorithm for
the k-cut problem. In Foundations of Computer Science, 1988., 29th
Annual Symposium on, pages 444–451, 1988.

[6] Mihajlo Grbovic and Haibin Cheng. Real-time personalization using
embeddings for search ranking at airbnb. In SIGKDD, pages 311–320,
2018.

[7] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan
Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-
commerce in your inbox: Product recommendations at scale. In
SIGKDD, pages 1809–1818, 2015.

[8] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In SIGKDD, pages 855–864, 2016.

[9] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. Paral-
lelizing word2vec in shared and distributed memory. arXiv preprint
arXiv:1604.04661, 2016.

[10] Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In SIGKDD, pages 426–434, 2008.

1675

[11] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei
Huang, Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. Multi-
interest network with dynamic routing for recommendation at tmall. In
CIKM, pages 2615–2623, 2019.

[12] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet computing,
(1):76–80, 2003.

[13] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-
sne. Journal of machine learning research (JMLR), 9(Nov):2579–2605,
2008.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In NeurIPS, pages 3111–3119, 2013.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In NeurIPS, pages 3111–3119, 2013.

[17] Erik Ordentlich, Lee Yang, Andy Feng, Peter Cnudde, Mihajlo Grbovic,
Nemanja Djuric, Vladan Radosavljevic, and Gavin Owens. Network-
efficient distributed word2vec training system for large vocabularies. In
CIKM, pages 1139–1148, 2016.

[18] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.
Asymmetric transitivity preserving graph embedding. In SIGKDD, pages
1105–1114, 2016.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In SIGKDD, pages 701–710, 2014.

[20] Chuan Shi, Binbin Hu, Xin Zhao, and Philip Yu. Heterogeneous infor-
mation network embedding for recommendation. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2018.

[21] Stergios Stergiou, Zygimantas Straznickas, Rolina Wu, and Kostas
Tsioutsiouliklis. Distributed negative sampling for word embeddings.
In AAAI, pages 2569–2575, 2017.

[22] Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec:
Product embeddings using side-information for recommendation. In
RecSys, pages 225–232, 2016.

[23] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao,
and Dik Lun Lee. Billion-scale commodity embedding for e-commerce
recommendation in alibaba. In SIGKDD, pages 839–848, 2018.

[24] Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine
Bordes, and Jason Weston. Starspace: Embed all the things! In AAAI,
pages 5569–5577, 2018.

[25] Wenyi Xiao, Huan Zhao, Haojie Pan, Yangqiu Song, Vincent W. Zheng,
and Qiang Yang. Beyond personalization: Social content recommenda-
tion for creator equality and consumer satisfaction. In SIGKDD, pages
235–245, 2019.

[26] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks for
web-scale recommender systems. In SIGKDD, pages 974–983, 2018.

[27] Huan Zhao, Quanming Yao, James T Kwok, and Dik Lun Lee. Col-
laborative filtering with social local models. In ICDM, pages 645–654.
IEEE, 2017.

[28] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun
Lee. Meta-graph based recommendation fusion over heterogeneous
information networks. In SIGKDD, pages 635–644, 2017.

[29] Huan Zhao, Yingqi Zhou, Yangqiu Song, and Dik Lun Lee. Motif
enhanced recommendation over heterogeneous information network. In
CIKM, pages 2189–2192, 2019.

[30] Kui Zhao, Yuechuan Li, Zhaoqian Shuai, and Cheng Yang. Learning
and transferring ids representation in e-commerce. In SIGKDD, pages
1031–1039, 2018.

[31] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao.
Scalable graph embedding for asymmetric proximity. In AAAI, pages
2942–2948, 2017.

1676

