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ABSTRACT
Industrial recommender systems have embraced deep learning al-
gorithms for building intelligent systems to make accurate recom-
mendations. At its core, deep learning offers powerful ability for
learning representations from data, especially for user and item rep-
resentations. Existing deep learning-based models usually represent
a user by one representation vector, which is usually insufficient
to capture diverse interests for large-scale users in practice. In this
paper, we approach the learning of user representations from a
different view, by representing a user with multiple representation
vectors encoding the different aspects of the user’s interests. To this
end, we propose the Multi-Interest Network with Dynamic routing
(MIND) for learning user representations in recommender systems.
Specifically, we design a multi-interest extractor layer based on
the recently proposed dynamic routing mechanism, which is ap-
plicable for modeling and extracting diverse interests from user’s
behaviors. Furthermore, a technique named label-aware attention
is proposed to help the learning process of user representations.
Through extensive experiments on several public benchmarks and
one large-scale industrial dataset from Tmall, we demonstrate that
MIND can achieve superior performance than state-of-the-art meth-
ods in terms of recommendation accuracy. Currently, MIND has
been deployed for handling major online traffic at the homepage
on Mobile Tmall App.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION

Figure 1: Left: The areas highlighted with dashed rectangle
are personalized for billion-scale users at Tmall; Right: User
A interacts with products from several different categories,
including clothes, sports and food, while user B interacts
with products of books, toys and cellphones.

Tmall, the biggest Business-To-Customer (B2C) e-commerce plat-
form in China, serves billion-scale users by providing billion-scale
products online. On November 11-th of 2018, the well-known Tmall
global shopping festival, the Gross Merchandise Volume (GMV)
is around 213 billion yuan, achieving an increase rate of 26.9%
compared with the same day of 2017. As the number of users and
products is continuously growing, it becomes increasingly impor-
tant to help each user find products that he/she might be interested
in. In recent years, Tmall has spent huge efforts in developing per-
sonalized recommender systems (RS for short), which significantly
contribute to the optimization of user experience and the increase
of business value. For example, the homepage on Mobile Tmall
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App (as shown in Figure 1 (Left)), which accounts for about half of
total traffic at Tmall, has deployed RS for displaying personalized
products to meet customers’ personalized need.

Due to the billion-scale users and items, the recommendation
process designed for Tmall consists of two stages, the matching
stage and the ranking stage. The matching stage is responsible for
retrieving thousands of candidate items that are relevant to user in-
terests, after which the ranking stage predicts precise probabilities
of users interacting with these candidate items. For both of the two
stages, it is vital to model user interests and find user representa-
tions capturing user interests, in order to support efficient retrieval
of items that satisfy users’ interests. However, it is non-trivial to
model user interests at Tmall, due to the existence of diverse in-
terests of users. On average, billion-scale users visit Tmall, each
user interacts with hundreds of products every day. The interacted
products tend to belong to different categories, indicating the di-
versity of user interests. For example, as shown in Figure 1 (Right),
different users are distinct in terms of their interests and the same
user may also be interested in various kinds of items. Therefore,
the capability of capturing user’s diverse interests becomes vital
for RS at Tmall.

Existing recommendation algorithms model and represent user
interests in different ways. Collaborative filtering-based methods
represent user interests by historical interacted items [21] or hidden
factors [15], which suffer from sparsity problem or computationally
demanding. Deep learning-based methods usually represent user
interests with low-dimensional embedding vectors. For example,
the deep neural network proposed for YouTube video recommenda-
tion (YouTube DNN) [5] represents each user by one fixed-length
vector transformed from the past behaviors of users, which can be
a bottleneck for modeling diverse interests, as its dimension must
be large in order to express the huge number of interest profiles
at Tmall. Deep Interest Network (DIN)[30] makes the user repre-
sentation vary over different items with attention mechanisms to
capture the diversity of user interests. Nevertheless, the adoption
of attention mechanisms also makes it computationally prohibitive
for large-scale applications with billion-scale items as it requires
re-calculation of user representation for each item, making DIN
only applicable for the ranking stage. Therefore, for the matching
stage, one has to increase the dimension of both user and item
representations in order to model diverse interests of billion-scale
users if only one user representation vector is used. However, as the
numbers of users and items are billion-scale, increasing dimension
will induce huge costs for both computation and storage. Moreover,
the increase of parameter size would make it difficult for model
optimization. So, what we seek is a proper way to increase model
capability without much additional cost.

Instead of using only one user representation vector, in this pa-
per, we propose to use multiple representation vectors to model
billion-scale users’ diverse interests. Through this way, we have
significantly increased model capability as well as recommendation
accuracy, while no much additional cost is needed. Specifically, we
propose the Multi-Interest Network with Dynamic routing (MIND)
for learning multiple representation vectors for each user. Inspired
by the dynamic routing algorithm [20], we design a novel layer
called multi-interest extractor layer, and this layer can discover dif-
ferent aspects of interests and generate representations for diverse

interests. Then, several feed-forward layers are stacked to trans-
form these interest representation vectors into user representation
vectors. These user representation vectors are computed only once
and can be used in the matching stage for retrieving relevant items
from billion-scale items. To summarize, the main contributions of
this work are as follows:

• To capture diverse interests of users from user behaviors,
we design the multi-interest extractor layer, which utilizes
dynamic routing to adaptively aggregate user’s historical
behaviors into user representation vectors.
• By using user representation vectors produced by the multi-
interest extractor layer and a newly proposed label-aware
attention layer, we build a deep neural network for personal-
ized recommendation tasks. Compared with existing meth-
ods, MIND shows superior performance on several public
datasets and one industrial dataset from Tmall.
• To deploy MIND for serving billion-scale users at Tmall, we
construct a system to implement the whole pipeline for data
collecting, model training and online serving. The deployed
system significantly improves the click-through rate (CTR)
of the homepage on Mobile Tmall App.

The remainder of this paper is organized as follows: related works
are reviewed in section 2; Section 3 elaborates the technical details
of MIND; In section 4, we detail the experiments for comparing
MIND with existing methods on several public benchmarks and
online serving; Section 5 introduces the deployment of MIND in
large-scale industrial application; The last section gives conclusion
and future work of this paper.

2 RELATEDWORK
Deep Learning for Recommendation. Inspired by the success of
deep learning in computer vision and natural language processing
[16], much effort has been put for developing deep learning-based
recommendation algorithms [3]. Besides the industrial applications
proposed by [5, 30], various types of deep models have gained sig-
nificant attention. Neural Collaborative Filtering (NCF) [9], DeepFM
[7] and Deep Matrix Factorization Models (DMF) [26] construct a
neural network composed of several MLPs to model the interaction
between users and items. [22] presents a novel solution to top-N
sequential recommendation by providing an united and flexible
network for capturing more features.

User Representation. Representing users as vectors is com-
monly used in RS. Traditional methods assemble user preference
as vectors composed of interested items [10, 21], keywords [6] and
topics [28]. As the emergence of distributed representation learning,
user embeddings obtained by neural networks are widely used. [4]
employs RNN-GRU to learn user embeddings from the temporal or-
dered review documents. [29] learns user embedding vectors from
word embedding vectors and applies them to recommending schol-
arly microblogs. [2] proposes a novel convolutional neural network
based model that explicitly learns and exploits user embeddings in
conjunction with features derived from utterances.

Capsule Network. The concept of "Capsule", a small group of
neurons assembled to output a whole vector, is firstly proposed by
Hinton [11] at 2011. Instead of backpropagation, dynamic routing



Figure 2: Overview of MIND. MIND takes user behaviors with user profile features as inputs, and outputs user representation
vectors for item retrieval in the matching stage of recommendation. Id features from input layer are transformed into em-
beddings through the embedding layer, and embeddings of each item are further averaged by a pooling layer. User behavior
embeddings are fed into the multi-interest extractor layer, which produces interest capsules. By concatenating interest cap-
sules with user profile embedding and transforming the concatenated capsules by several ReLU layers, user representation
vectors are obtained. An extra label-aware attention layer is introduced to guide the training process. At serving, the multiple
user representation vectors are used to retrieve items through an approximate nearest neighbor lookup approach.

[20] is used to learn the weights on the connections between cap-
sules, which is improved by utilizing Expectation-Maximization
algorithm [12] to overcome several deficiencies and achieves bet-
ter accuracy. These two main differences to conventional neural
network make capsule networks capable of encoding the relation-
ship between the part and the whole, which is adavanced not only
in computer vision but also in natural language processing and
knowledge graph. [27] investigates the capsule networks for text
classification and proposes three strategies to boost the perfor-
mance. [19] uses capsule network to model relationship triples for
knowledge graph completion and search personalization.

3 METHOD
3.1 Problem Formalization
The objective of the matching stage for industrial RS is to retrieve
a subset of items from the billion-scale item pool I for each user
u ∈ U such that the subset contains only thousands of items and
each item is relevant to interests of the user. In order to achieve this
objective, historical data generated by RS is collected for building a
matching model. Specifically, each instance can be represented by
a tuple (Iu ,Pu ,Fi ), where Iu denotes the set of items interacted
by user u (also called user behavior), Pu the basic profiles of user u
(like user gender and age), Fi the features of target item (such as
item id, category id, brand id, seller id and title etc.).

The core task of MIND is to learn a function for mapping raw
features into user representations, which can be formulated as

Vu = fuser (Iu ,Pu ) , (1)

where Vu =
(
−→
v 1
u , ...,

−→
v K
u

)
∈ Rd×K denotes the representation

vectors of user u, d the dimension, K the number of representation
vectors. When K = 1, one representation vector is used, just like
YouTube DNN. Besides, the representation vector of target item i is
obtained by an embedding function as

−→e i = fitem (Fi ) , (2)

where −→e i ∈ R
d×1 denotes the representation vector of item i , and

the detail of fitem will be illustrated in the "Embedding & Pooling
Layer" section.

When user representation vectors and item representation vec-
tors are learned, top N candidate items are retrieved according to a
scoring function. As a user may own several representation vectors,
the item score is determined by the nearest representation vector
so the scoring function is:

fscore
(
Vu ,−→e i

)
= max

1≤k≤K
−→e T
i
−→
v k
u , (3)

where N is the predefined number of items to be retrieved in the
matching stage.

3.2 Embedding & Pooling Layer
As shown in Figure 2, the input of MIND consists of three groups,
user profile Pu , user behavior Iu , and label item Fi . Each group
contains several categorical id features, and these id features are
of extremely high dimension. For instance, the number of item
ids is about billions, thus we adopt the widely-used embedding
technique to embed these id features into low-dimensional dense
vectors (a.k.a embeddings), which significantly reduces the number
of parameters and eases the learning process. For id features (gender,



age, etc.) from Pu , corresponding embeddings are concatenated to
form the user profile embedding −→p u . For item ids along with other
categorical ids (category id, brand id and seller id etc.) that have been
proved to be useful for cold-start items [24] from Fi , corresponding
embeddings are further passed through an average pooling layer
to form the label item embedding −→e i . To enrich the feature space,
other attributes of items such as color, texture and style, are easily to
be embed and combined to the item embedding, which is expected
to improve the expression ability of the embeddings. Lastly, for
items from user behavior Iu , corresponding item embeddings are
collected to form the user behavior embedding Eu = {−→e j , j ∈ Iu }.

3.3 Multi-Interest Extractor Layer
We argue that representing user interests by one representation
vector can be a bottleneck for capturing diverse interests of users,
because we have to compress all information related with diverse
interests of users into one representation vector. Thus, all infor-
mation about diverse interests of users is mixed together, causing
inaccurate item retrieval for the matching stage. Instead, we adopt
multiple representation vectors to express distinct interests of users
separately. By this way, diverse interests of users are considered sep-
arately in the matching stage, enabling more accurate item retrieval
for every aspect of interests.

To learn multiple representation vectors, we utilize clustering
process to group user’s historical behaviors into several clusters.
Items from one cluster are expected to be closely related and col-
lectively represent one particular aspect of user interests. Here,
we design the multi-interest extractor layer for clustering histori-
cal behaviors and inferring representation vectors for each cluster.
Since the design of multi-interest extractor layer is inspired by the
recently proposed dynamic routing for representation learning in
capsule network [11, 12, 20], we firstly revisit essential basics in
order to make this paper self-contained.

3.3.1 Dynamic Routing Revisit. We briefly introduce dynamic rout-
ing [20] for representation learning of capsules, a new form of
neural units represented by vectors. Suppose we have two layers of
capsules, and we refer capsules from the first layer and the second
layer as low-level capsules and high-level capsules respectively.
The goal of dynamic routing is to compute the values of high-
level capsules given the values of low-level capsules in an iterative
way. In each iteration, given low-level capsules i ∈ {1, ...,m} with
corresponding vectors −→c l

i ∈ R
Nl×1, i ∈ {1, ...,m} and high-level

capsules j ∈ {1, ...,n} with corresponding vectors −→c h
j ∈ R

Nh×1, j ∈

{1, ...,n}, the routing logit bi j between low-level capsule i and high-
level capsule j is computed by

bi j = (
−→c h

j )
T Si j−→c l

i , (4)

where Si j ∈ RNh×Nl denotes the bilinear mapping matrix to be
learned.

With routing logits calculated, the candidate vector for high-level
capsule j is computed as weighted sum of all low-level capsules

−→z h
j =

m∑
i=1

wi jSi j−→c l
i , (5)

where wi j denotes the weight for connecting low-level capsule i
and high-level capsule j and is calculated by performing softmax

on routing logits as

wi j =
expbi j∑m

k=1 expbik
. (6)

Finally, a non-linear "squash" function is applied to obtain the
vectors of high-level capsules as

−→c h
j = squash(

−→z h
j ) =

−→z h
j

2
1 +

−→z h
j

2
−→z h

j−→z h
j

 . (7)

The values of bi j are initialized to zeros, and the routing process
is usually repeated three times to converge. When routing finished,
high-level capsule’s values −→c h

j are fixed and can be used as inputs
for next layers.

3.3.2 B2I Dynamic Routing. In a nutshell, capsule is a new kind
of neuron represented by one vector instead of one scalar used in
ordinary neural networks. The vector-based capsule is expected to
be able to represent different properties of an entity, in which the
orientation of a capsule represents one property and the length of
the capsule is used to represent the probability that the property
exists. Correspondingly, the objective of the multi-interest extractor
layer is to learn representations for expressing properties of user
interests as well as whether corresponding interests exist. The
semantic connection between capsules and interest representations
motivates us to regard the behavior/interest representations as
behavior/interest capsules and employ dynamic routing to learn
interest capsules from behavior capsules. Nevertheless, the original
routing algorithm proposed for image data is not directly applicable
for processing user behavior data. So, we propose Behavior-to-
Interest (B2I) dynamic routing for adaptively aggregating user’s
behaviors into interest representation vectors, and it differs from
original routing algorithm in three aspects.

Shared bilinear mapping matrix.We use fixed bilinear mapping
matrix S instead of a separate bilinear mapping matrix for each pair
of low-level capsules and high-level capsules in original dynamic
routing due to two considerations. On the one hand, user behaviors
are of variable-length, ranging from dozens to hundreds for Tmall
users, thus the use of fixed bilinear mapping matrix is generalizable.
On the other hand, we hope interest capsules lie in the same vector
space, but different bilinear mapping matrice would map interest
capsules into different vector spaces. Thus, the routing logit is
calculated by

bi j =
−→u T

j S
−→e i , i ∈ Iu , j ∈ {1, ...,K}, (8)

where−→e i ∈ R
d denotes the embedding of behavior item i ,−→u j ∈ R

d

the vector of interest capsule j. The bilinear mapping matrix S ∈
Rd×d is shared across each pair of behavior capsules and interest
capsules.

Randomly initialized routing logits. Owing to the use of shared
bilinear mapping matrix S, initializing routing logits to zeros will
lead to the same initial interest capsules. Then, the subsequent
iterations will be trapped in a situation, where different interest
capsules remain the same all the time. To mitigate this phenomenon,
we sample a random matrix from gaussian distributionN(0,σ 2) for
initial routing logits tomake initial interest capsules differ from each
other, similar to the well-established K-Means clustering algorithm.



Dynamic interest number. As the number of interest capsules
owned by different users may be different, we introduce a heuristic
rule for adaptively adjusting the value of K for different users.
Specifically, the value of K for user u is computed by

K ′u = max(1,min(K , log2(|Iu |))). (9)

This strategy for adjusting the number of interest capsules can
save some computing resources for those users with fewer interests.

The whole dynamic routing procedure is listed in Algorithm 1.

Algorithm 1 B2I Dynamic Routing.

Input: behavior embeddings
{
−→e i , i ∈ Iu

}
, iteration times r ,

number of interest capsules K
Output: interest capsules

{
−→u j , j = 1, ...,K ′u

}
1: calculate adaptive number of interest capsules K ′u by (9)
2: for all behavior capsule i and interest capsule j: initialize bi j ∼
N(0,σ 2)

3: for k ← 1, r do
4: for all behavior capsule i:wi j ← so f tmax(bi j )

5: for all interest capsule j: −→z j =
∑
i ∈Iu wi jS−→e i

6: for all interest capsule j: −→u j ← squash(
−→z j )

7: for all behavior capsule i and interest capsule j: bi j ←
−→u T

j S
−→e i

8: end for
9: return

{
−→u j , j = 1, ...,K ′u

}
3.4 Label-aware Attention Layer
Through multi-interest extractor layer, several interest capsules are
generated from user’s behavior embeddings. Different interest cap-
sules represent different aspects of user interests, and the relevant
interest capsule is used for evaluating user’s preference on specific
items. Therefore, during training, we design a label-aware attention
layer based on scaled dot-product attention [23] to make the target
item choose which interest capsule is used. Specifically, for one
target item, we calculate the compatibilities between each interest
capsule and target item embedding, and compute a weighted sum
of interest capsules as user representation vector for the target
item, where the weight for one interest capsule is determined by
corresponding compatibility. In label-aware attention, the label is
the query and the interest capsules are both keys and values, as
shown in Figure 2. The output vector of user u with respect to item
i is computed as

−→
v u = Attention

(
−→e i ,Vu ,Vu

)
= Vu softmax(pow(VT

u
−→e i ,p)),

where pow denotes element-wise exponentiation operator, p a tun-
able parameter for adjusting the attention distribution. When p
is close to 0, each interest capsule attends to receive even atten-
tion. When p is bigger than 1, as p increases, the value has bigger
dot-product will receive more and more weight. Consider the limit
case, when p gets infinity, the attention mechanism becomes a kind
of hard attention to pick the value who has the biggest attention
and ignore others. In our experiments, we find out that using hard
attention leads to faster convergence.

3.5 Training & Serving
With the user vector −→v u and the label item embedding −→e i ready,
we compute the probability of the user u interacting with the label
item i as

Pr(i |u) = Pr
(
−→e i |
−→
v u

)
=

exp
(
−→
v T
u
−→e i

)
∑
j ∈I exp

(
−→
v T
u
−→e j

) . (10)

Then, the overall objective function for training MIND is

L =
∑
(u,i)∈D

log Pr(i |u), (11)

where D is the collection of training data containing user-item
interactions. Since the number of items scales to billions, the sum
operation of the denominator (10) is computationally prohibitive.
Thus, we use the sampled softmax technique [18] to make the
objective function trackable and choose the Adam optimizer [14]
for training MIND.

After training, the MIND network except for the label-aware
attention layer can be used as user representation mapping function
fuser . At serving time, user’s behavior sequence and user profile
are fed into the fuser function, producing multiple representation
vectors for each user. Then, these representation vectors are used to
retrieve top N items by an approximate nearest neighbor approach
[13]. These items with highest similarities with user’s representa-
tion vectors are retrieved and constitute the final set of candidate
items for the matching stage of RS. Please note that, when a user
has new actions, it will alter his/her behavior sequence as well as
the corresponding user representation vectors, thus MIND enables
real-time personalization for the matching stage.

3.6 Connections with Existing Methods
Here, we make some remarks about the relations between MIND
and two existing methods, illustrating their similarities as well as
differences.

YouTube DNN. Both MIND and YouTube DNN utilize deep neural
networks to model behavior data to generate user representations,
which are used for large-scale item retrieval in thematching stage of
industrial RS. However, YouTube DNN uses one vector to represent
a user while MIND uses multiple vectors for that. When the value
of K in Algorithm 1 equals to 1, MIND is similar to YouTube DNN,
thus MIND can be viewed as generalization of YouTube DNN.

DIN. In terms of capturing diverse interests of users, MIND and
DIN share the similar goal. However, the two methods differ in
the way of achieving the goal as well as applicability. To deal with
diverse interests, DIN applies an attention mechanism at the item
level, while MIND employs dynamic routing to generate interest
capsules and considers diversity at the interest level. Moreover,
DIN focuses on the ranking stage as it handles thousands of items,
however, MIND decouples the process of inferring user representa-
tions and measuring user-item compatibility, making it applicable
to billion-scale items in the matching stage.



Table 1: Statistics of the two datasets for offline evaluation.

Dataset Users Goods Categories Samples
Amazon Books 351,356 393,801 1 6,271,511
TmallData 2,014,865 934,751 6,377 50,929,802

4 EXPERIMENTS
4.1 Offline Evaluation
In this section, we present the comparisons between MIND and
existing methods in terms of recommendation accuracy on several
datasets under offline settings.

4.1.1 Datasets and Experimental Setup. We choose two datasets for
evaluating recommendation performance. One is Amazon Books1
provided by [8, 17], representing one of the most widely-used public
dataset for e-commerce recommendations. The other called Tmall-
Data is held out from Mobile Tmall App, containing historical
behaviors of randomly sampled two millions of Tmall users in 10
days. For Amazon Books, we only keep items which have been
reviewed at least 10 times and users who have reviewed at least
10 items. For TmallData, we filter out items clicked by less than
600 unique users. The statistics of the two datasets are shown in
Table 1.

We choose next item prediction problem, that is predicting a
user’s next interaction, to evaluate the methods’ performance, be-
cause it is the core task in the matching stage of RS. After dividing
the user-item interaction data of each dataset randomly into train-
ing set and test set by a ratio of 19:1, for each user, a randomly
selected item interacted by the user is used as target item, while
the items interacted before the target item are collected as the user
behaviors. Hit rate is adopted as the main metric to measure the
recommendation performance, define as:

HitRate@N =

∑
(u,i)∈Dtest I (target item occurs in top N )

|Dtest |
,

(12)
where Dtest denotes the test set consisting of pairs of users and
target items (u, i) and I denotes the indicator function.

Hyperparameter tuning for the dimension of embedding vectors
d and the number of user interests K is conducted by experiments
on a group of parameters predefined according to the scale and
distribution of each dataset, and each method is tested with best
hyperparameters for a fair comparison.

4.1.2 Comparing Methods.

• WALS [1]WALS, short forWeightedAlternating Least Squares,
is a classical matrix factorization algorithm for decomposing
user-item interaction matrix into hidden factors of users and
items. Recommendation is made based on compatibilities
between hidden factors of users and target items.
• YouTube DNN [5] As mentioned above, YouTube DNN is
one of the most successful deep learning method used for
industrial recommendation systems.
• MaxMF [25] Themethod introduces a highly scalablemethod
for learning nonlinear latent factorization to model multiple
user interests.

1http://jmcauley.ucsd.edu/data/amazon/

4.1.3 Experimental Results. Table 2 summarizes the performance
of MIND as well as baselines on two datasets in terms of HitRate@N
(N = 10, 50, 100). Clearly, MIND accomplishes comparable perfor-
mance to all of the baselines on both datasets. The matrix factor-
ization approach, WALS, is beaten by other methods, revealing the
power of deep learning for improving the matching stage of RS.
However, equipped without deep learning, MaxMF performs much
better than WALS, which can be explained by the fact that MaxMF
generalizes standard MF to a nonlinear model and adopts multiple
user representation vectors. It can be observed that methods em-
ploying multiple user representation vectors (MaxMF-K-interest,
MIND-K-interest) performs generally better than other methods
(WALS, YouTube DNN, MIND-1-interest). Therefore, using multiple
user representation vectors is proved to be an effective way for mod-
eling user’s diverse interests as well as boosting recommendation
accuracy. Moreover, we can observe that the improvement intro-
duced by multiple user representation vectors is more significant
for TmallData, as the users of Tmall tend to exhibit more diverse
interests. This increasement of diversity can also be reflected by
the best K for each dataset, where the best K for TmallData is
larger than that for Amazon Books. The improvement of MIND-
1-interest over YouTube DNN shows that dynamic routing serves
as a better pooling strategy than average pooling. Considering the
results of MaxMF and MIND-K-interest, it verifies that extracting
multiple interests from user behaviors by dynamic routing outper-
forms the nonlinear modeling strategy used in MaxMF. This can be
attributed to two points: 1) The multi-interest extractor layer uti-
lizes a clustering procedure for generating interest representations,
which achieves more precise representation of user. 2) Label-aware
attention layer makes target item attend over multiple user repre-
sentation vectors, enabling more accurate matching between user
interests and target item.

4.2 Analysis of Hyperparameters
In this section, we conduct two experiments on Amazon Books to
study the influence of the hyperparameters within multi-interest
extractor layer and label-aware attention layer.

Initialization of routing logits. The random initialization for
routing logits adopted in multi-interest extractor layer is similar
to the initialization of K-means centroids, where the distributions
of initial cluster centers have strong impact on the final clustering
results. As the routing logits are initialized according to gaussian
distribution N(0,σ 2), we concern about different values of σ may
lead to different convergence which has effect on the performance.
To study the impact of σ , we initialize the routing logits bi j with
3 different values of σ , 0.1, 1 and 5. The results are shown by the
upper part of Figure 3, where each curve of 3 values almost overlap.
This observation reveals that MIND is robust to the values of σ ,
and it is rational to choose σ = 1 for our practical applications.

Power number in label-aware attention. As mentioned be-
fore, the power number p within label-aware attention controls the
proportion of each interest to the combined label-aware interest
representation. We compare the performance of MIND as p varies
from 0 to ∞ and show the results by the lower part of Figure 3.
Clearly, the performance of p = 0 is much worse than the others.
The reason is that, when taking p = 0 each interest has the same



Table 2: HitRate of differentmethods on the two datasets, where best performance is in boldface. HP denotes hyperparameters,
including K the number of interests and d the dimension of embeddings. Only the results with hyperparameters having best
performance is shown to demonstrate the effectiveness of corresponding methods. Percentages in the brackets indicate the
relative improvements over YouTube DNN.

Dataset HP Metric WALS YouTube DNN MaxMF-K-interest MIND-1-interest MIND-K-interest

Amazon Books K = 3
d = 36

HR@10 0.0144 (-37.66%) 0.0231 0.0285 (+23.38%) 0.0273 (+18.18%) 0.0309 (+33.77%)
HR@50 0.0553 (-25.87%) 0.0746 0.0862 (+15.55%) 0.0978 (+31.10%) 0.1101 (+47.59%)
HR@100 0.0907 (-20.65%) 0.1143 0.1304 (+14.09%) 0.1459 (+27.65%) 0.1631 (+42.69%)

TmallData K = 5
d = 64

HR@10 0.0372 (-36.84%) 0.0589 0.0628 (+6.62%) 0.0720 (+22.24%) 0.0972 (+65.03%)
HR@50 0.0831 (-33.84%) 0.1256 0.1820 (+44.90%) 0.1512 (+20.38%) 0.2080 (+65.60%)
HR@100 0.1126 (-31.67%) 0.1648 0.2567 (+55.76%) 0.1930 (+17.11%) 0.2699 (+63.77%)

Figure 3: Hyperparameters’ impact. The upper part shows
that MIND can achieve comparable results with different σ ;
the lower part shows thatMIND performs better with bigger
p.

attention thus the combined interest representation equals the av-
erage of interests with no reference to the label. Taking p ⩾ 1,
the attention scores are proportional to the similarities between
interest representation vectors and target item embeddings, which
makes the combined interest representation a weighted sum of
interests. It also shows that performance gets better as p increases,
since the representation vector of the interest with more similarity
to the target item acquires larger attention, which evolves to a hard
attention scheme as p = ∞. By this scheme, the interest represen-
tation nearest to the target item dominates the combined interest
representation, enabling MIND converge faster and perform the
best.

4.3 Online Experiments
We conduct online experiments by deploying MIND to handle real
traffic at Tmall homepage for one week. To make comparisons
fairly, all methods deployed in the matching stage are followed by
the same ranking procedure. CTR, short for click-through-rate, a

Figure 4: Online CTRs in a week. MIND with 5 ~7 interests
performs best in all comparingmethods.MIND significantly
beats the two baselinemethods, item-based CF and YouTube
DNN.

widely used industrial metric, is used to measure the performance
of methods for serving online traffic.

There are two baseline methods for online experiments. One is
item-based CF, which is the base matching algorithm serving the
majority of the online traffic. The other is YouTube DNN, which is
the well-known deep learning-based matching model. We deploy
all comparing methods in an A/B test framework, and one thousand
of candidate items are retrieved by each method, which then fed to
the ranking stage for final recommendation.

The experimental results are summarized in Figure 4. It is clearly
that MIND outperforms item-based CF and YouTube DNN, which
indicates that MIND generates a better user representation. Besides,
we make the following observations: 1) As is optimized by the
long-term practice, item-based CF performs better than YouTube
DNN which is also exceeded by MIND with single interest. 2) A
very noticeable trend is that the performance of MIND gets bet-
ter as the number of extracted interests increases from 1 to 5. 3)
The performance of MIND peaks when the number of extracted
interests reaches 5, after that the CTR remains constant and the
improvement of 7 interests is ignorable. 4) MIND with dynamic
interest number has the comparable performance with MIND with
7 interests. From the observations above, we make several conclu-
sions. First, for Tmall, the optimal number of user interests is 5 ~7,
which reveals the average diversity of user interests. Second, the
dynamic interest number mechanism does not bring CTR gain, but
during the experiments we recognize the scheme can decrease the
cost of serving, which benefits large-scale service such as Tmall



and is more adoptable in practice. In a word, the online experiments
validate that MIND achieves an better solution to model users with
diverse interests and can significantly advance the whole RS.

4.4 Case Study

Figure 5: Heatmap of coupling coefficients for two users.
Each class of behaviors has themax coupling coefficients on
the corresponding interest. User C (upper) and user D (be-
low) have different granularity of interests.

4.4.1 Coupling Coefficients. The coupling coefficients between
behavior capsules and interest capsules quantify the grade of mem-
bership of behaviors to interests. In this section, we visualize these
coupling coefficients to show that the interest extraction process is
interpretable.

Figure 5 illustrates the coupling coefficients associated to two
users randomly selected from Tmall daily active users, where each
row corresponds to one interest capsule and each column corre-
sponds to one behavior. It shows that user C (upper) has interacted
with 4 classes of goods (headphones, snacks, handbags and clothes),
each of which has the max coupling coefficients on one interest
capsule and forms the corresponding interest. While user D (be-
low) is interested only in clothes, thus the 3 interests with finer
grain size (sweaters, overcoats and down jackets) are resolved from
the behaviors. Regarding this result, we confirm that each class of
user behaviors are clustered together and form the corresponding
interest representation vector.

4.4.2 Item Distribution. At serving time, items similar to user in-
terests are retrieved by nearest neighbor search. We visualize the
distribution of these items recalled by each interest based on their
similarity to the corresponding interest. Figure 6 shows the item
distributions of the same user (user C) mentioned by Figure 5 (up-
per). The distributions are obtained by two methods respectively,
where the upper 4 axes demonstrate the items recalled by 4 inter-
ests based on MIND while the lowest axis illustrates that based
on YouTube DNN. The items are scattered at the axes according
to their similarity with the interests, which has been scaled to 0
~1 by min-max normalization and rounded to the nearest 0.5. One

Figure 6: The distribution of items recalled by each interest
corresponding to the user behaviors exampled on the left.
Each interest is demonstrated by one axis, of which the co-
ordinate is the similarity between items and interests. The
size of the point is proportional to the number of the items
with the specific similarity.

point is assembled by the items lying within the specific range,
thus the size of each point represents the number of the items with
the corresponding similarity. We also show some items selected
randomly from all the candidates. As expected, the items recalled
by MIND are strongly correlated with the corresponding interest,
while that by YouTube DNN vary widely along the categories of
items and have lower similarity to the user’s behaviors.

5 SYSTEM DEPLOYMENT
In this section, we describe the implementation and deployment
of MIND at Tmall. A typical workflow composed of several basic
platforms is shown as Figure 7 and detailed as below:

Figure 7: Architecture of the RS at Tmall.

As users launch Mobile Tmall APP, the requests for recommen-
dation are sent to Tmall Personality Platform, the server cluster
integrated with a bunch of plug-in modules and served as online
recommender service of Tmall. Recent behaviors of users including
real-time user feedback are retrieved by Tmall Personality Platform
and sent to User Interest Extractor which is the main module imple-
menting MIND for transforming user behaviors to multiple user
interests. Subsequently, Recall Engine searches for the items with
embedding vectors nearest to the user interests. Items triggered
by different interests are merged together as candidate items and



sorted by their similarity to the user interests. The whole procedure
of selecting thousands of candidate items from the billion-scale item
pool by User Interest Extractor and Recall Engine can be fulfilled in
less than 15milliseconds, which is an increase of only 10% compared
to the original version with single interest, due to the parallelism
of searching items for each interest generated by MIND. Taking a
tradeoff between the scope of items and the response time of the
system, top 1000 of these candidate items are scored by Ranking
Service which predicts CTRs with a bunch of features. Finally, Tmall
Personality Platform completes the item list as the recommendation
results shown to users. Both User Interest Extractor and Ranking
Service are trained on Model Training Platform using 100 GPUs, by
which the training can be executed in 8 hours. Benefiting from the
superior performance ofModel Training Platform, the deep network
served for prediction is updated every day, which guarantees the
newly released products to be calculated and exposured.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a new structure of neural network, namely
Multi-Interest Network with Dynamic routing (MIND), to represent
user’s diverse interests for thematching stage in e-commerce recom-
mendation, which involves billion scale users and items. Specifically,
we design a multi-interest extractor layer with a variant dynamic
routing to extract user’s diverse interests which are then trained
with a novel label-aware attention scheme. Offline experiments
are conducted to demonstrate that MIND achieves superior per-
formance on public benchmarks. Online CTRs are also reported to
demonstrate the effectiveness and feasibility of MIND at Tmall’s
live production. For future work, we will pursue two directions.
The first is to incorporate more information about user’s behavior
sequence, such as behavior time etc. The second is to optimize the
initialization scheme of dynamic routing, referring to K-means++
initialization scheme, so as to achieve a better user representation.
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